On the pairs of multiplicative functions satisfying some relations

Aequationes mathematicae - Tập 55 - Trang 1-14 - 1998
N. L. Bassily1, I. Kátai2
1Roxy, Egypt
2Eötvös Loránd University, Computer Algebra Dept., Budapest, Hungary

Tóm tắt

It is proved that if f and g are complex-valued multiplicative functions such that $ g(2n + 1) - Af(n) \to 0 (n \to \infty) $ , for some $ A \neq 0 $ , then either $ f(n) \to 0 (n \to \infty) $ , or $ f(n) = n^s $ , $ 0 \le {\rm Re} s < 1 $ and $ A = f(2), g(n) = f(n) $ for every odd n.