On the pairs of multiplicative functions satisfying some relations
Tóm tắt
It is proved that if f and g are complex-valued multiplicative functions such that
$ g(2n + 1) - Af(n) \to 0 (n \to \infty) $
, for some
$ A \neq 0 $
, then either
$ f(n) \to 0 (n \to \infty) $
, or
$ f(n) = n^s $
,
$ 0 \le {\rm Re} s < 1 $
and
$ A = f(2), g(n) = f(n) $
for every odd n.