On the optical solitons and local conservation laws of Chen–Lee–Liu dynamical wave equation
Tài liệu tham khảo
Guo, 2012, Nonlinear Schr“odinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85, 026607, 10.1103/PhysRevE.85.026607
Agrawal, 2000, Nonlinear fiber optics, 195
Hesegawa, 1995
Biondini, 2014, Inverse scattering transform for the focusing nonlinear Schr”odinger equation with nonzero boundary conditions, J. Math. Phys., 55, 031506, 10.1063/1.4868483
Demontis, 2013, The inverse scattering transform for the defocusing nonlinear Schr“odinger equations with nonzero boundary conditions, Stud. Appl. Math., 131, 1, 10.1111/j.1467-9590.2012.00572.x
Savescu, 2014, Optical solitons in nonlinear directional couplers with spatio-temporal dispersion, J. Mod. Opt., 61, 442, 10.1080/09500340.2014.894149
Biswas, 2012, Optical solitons and complexitons of the Schrodinger–Hirota equation, Opt. Laser Technol., 44, 2265, 10.1016/j.optlastec.2012.02.028
Zhou, 2016, Thirring combo solitons with cubic nonlinearity and spatio-temporal dispersion, Waves Random Complex Med., 26, 204, 10.1080/17455030.2015.1132863
Triki, 2012, Bright and dark solitons of the modified complex Ginzburg–Landau equation with parabolic and dual-power law nonlinearity, Roman. Rep. Phys., 64, 367
Mirzazadeh, 2018, Optical solitons and conservation law of Kundu–Eckhaus equation, Optik, 154, 551, 10.1016/j.ijleo.2017.10.084
Ahmad, 2020, Analytic approximate solutions for some nonlinear parabolic dynamical wave equations, J. Taibah Univ. Sci., 14, 346, 10.1080/16583655.2020.1741943
Ablowitz, 1991
Gerdjikov, 1982, The quadratic bundle of general form and the nonlinear evolution equations (No. JINR-E-2-82-545), Joint Inst. Nucl. Res.
Chen, 1979, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 20, 490, 10.1088/0031-8949/20/3-4/026
Sasa, 1991, New-type of soliton solutions for a higher-order nonlinear Schr”odinger equation, J. Phys. Soc. Jpn., 60, 409, 10.1143/JPSJ.60.409
Kaup, 1978, An exact solution for a derivative nonlinear Schr“odinger equation, J. Math. Phys., 19, 798, 10.1063/1.523737
Seadawy, 2019, Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid–gas bubbles under the consideration of heat transfer and viscosity, J. Taibah Univ. Sci., 13, 1060, 10.1080/16583655.2019.1680170
Bansal, 2020, Optical solitons with Chen–Lee–Liu equation by Lie symmetry, Phys. Lett. A, 384, 126202, 10.1016/j.physleta.2019.126202
Arshad, 2017, Elliptic function and solitary wave solutions of the higher-order nonlinear Schrodinger dynamical equation with fourth-order dispersion and cubic–quintic nonlinearity and its stability, Eur. Phys. J. Plus, 132, 371, 10.1140/epjp/i2017-11655-9
Seadawy, 2018, Dispersive solitary wave solutions of Kadomtsev–Petviashivili and modified Kadomtsev–Petviashivili dynamical equations in unmagnetized dust plasma, Results Phys., 8, 1216, 10.1016/j.rinp.2018.01.053
Mohammed, 2019, Aproximate Adomian solutions to the bright optical solitary waves of the Chen–Lee–Liu equation, Matter: Int. J. Sci. Technol., 5
Arnous, 2017, Optical solitons with complex Ginzburg–Landau equation by modified simple equation method, Optik, 144, 475, 10.1016/j.ijleo.2017.07.013
Arshad, 2017, Modulation stability and optical soliton solutions of nonlinear Schrodinger equation with higher order dispersion and nonlinear terms and its applications, Superlattices Microstruct., 112, 422, 10.1016/j.spmi.2017.09.054
Sağlam ”Ozkan, 2020, A third-order nonlinear Schr“odinger equation: the exact solutions, group-invariant solutions and conservation laws, J. Taibah Univ. Sci., 14, 585, 10.1080/16583655.2020.1760513
Seadawy, 2017, Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili–Burgers equation in quantum plasma, Math. Methods Appl. Sci., 40, 1598, 10.1002/mma.4081
Seadawy, 2017, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev–Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132, 29, 10.1140/epjp/i2017-11313-4
Seadawy, 2016, Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a magnetized electron-positron plasma, Physica A: Stat. Mech. Appl., 455, 44, 10.1016/j.physa.2016.02.061
Arshad, 2017, Elliptic function and solitary wave solutions of the higher-order nonlinear Schrodinger dynamical equation with fourth-order dispersion and cubic–quintic nonlinearity and its stability, Eur. Phys. J. Plus, 132, 371, 10.1140/epjp/i2017-11655-9
Seadawy, 2015, Approximation solutions of derivative nonlinear Schr”odinger equation with computational applications by variational method, Eur. Phys. J. Plus, 130, 182, 10.1140/epjp/i2015-15182-5
Yaşar, 2018, New optical solitons of space-time conformable fractional perturbed Gerdjikov–Ivanov equation by sine-Gordon equation method, Results Phys., 9, 1666, 10.1016/j.rinp.2018.04.058
Yaşar, 2018, Optical solitons of conformable space-time fractional NLSE with spatio-temporal dispersion, N. Trends Math. Sci., 6, 116, 10.20852/ntmsci.2018.300
Yıldırım, 2019, A novel scheme for nonlinear evolution equations using symbolic computations, J. Appl. Nonlinear Dyn., 8, 463, 10.5890/JAND.2019.09.009
Sj“oberg, 2007, Double reduction of PDEs from the association of symmetries with conservation laws with applications, Appl. Math. Comput., 184, 608
Sj”oberg, 2009, On double reductions from symmetries and conservation laws, Nonlinear Anal.: Real World Appl., 10, 3472, 10.1016/j.nonrwa.2008.09.029
Bokhari, 2010, Generalization of the double reduction theory, Nonlinear Anal.: Real World Appl., 11, 3763, 10.1016/j.nonrwa.2010.02.006
Naz, 2013, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem
Bessel-Hagen, 1921, “Uber die erhaltungss”atze der elektrodynamik, Math. Ann., 84, 258, 10.1007/BF01459410
Ibragimov, 1995
Kara, 1997, Action of Lie–B“acklund symmetries on conservation laws, Mod. Group Anal., 7
Kara, 2000, Relationship between symmetries and conservation laws, Int. J. Theor. Phys., 39, 23, 10.1023/A:1003686831523
Steeb, 1982, Diffusion equations and Lie and Lie–B”acklund transformation groups, Physica A: Stat. Mech. Appl., 114, 95, 10.1016/0378-4371(82)90266-7
Bokhari, 2010, Generalization of the double reduction theory, Nonlinear Anal.: Real World Appl., 11, 3763, 10.1016/j.nonrwa.2010.02.006