On the number of eigenvalues of the discrete one-dimensional Schrödinger operator with a complex potential

Bulletin of Mathematical Sciences - Tập 7 Số 2 - Trang 219-227 - 2017
Artem Hulko1
1Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A 34, 57–72 (2001)

Bögli, S.: Schrödinger operator with non-zero accumulation points of complex Eigenvalues (2016). arxiv:1605.09356 (Preprint)

Borichev, A., Golinskii, L., Kupin, S.: A Blaschke-type condition and its application to complex Jacobi matrices. Bull. Lond. Math. Soc. 41, 117–123 (2009)

Davies, E.B.: Non-self-adjoint differential operators. Bull. Lond. Math. Soc. 34(5), 513–532 (2002)

Davies, E.B., Nath, J.: Schrödinger operators with slowly decaying potentials. J. Comput. Appl. Math. 148, 1–28 (2002)

Demuth, M., Katriel, G.: Eigenvalue inequalities in terms of Schatten norm bounds on differences of semigroups, and application to Schrödinger operators. Ann. Henri Poincaré 9(4), 817–834 (2008)

Demuth, M., Hansmann, M., Katriel, G.: On the discrete spectrum of non-selfadjoint operators. J. Funct. Anal. 257(9), 2742–2759 (2009)

Demuth, M., Hansmann, M., Katriel, G.: Eigen values of non-self adjoint operators: a comparison of two approaches. In: Mathematical Physics, Spectral Theory and Stochastic Analysis, Springer, pp. 107–163 (2013)

Enblom, A.: Estimates for eigenvalues of Schrödinger operators with complex-valued potentials (2015). arxiv:1503.06337 (Preprint)

Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. III (2015). arxiv:1510.03411v1 (Preprint)

Frank, R.L., Laptev, A., Lieb, E.H., Seiringer, R.: Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77, 309–316 (2006)

Frank, R.L., Laptev, A., Safronov, O.: On the number of eigenvalues of Schrödinger operators with complex potentials. to appear

Frank, R.L., Laptev, A., Seiringer, R.: A sharp bound on eigenvalues of Schrödinger operators on the half-line with complex-valued potentials. Spectral theory and analysis, pp. 39–44, Oper. Theory Adv. Appl. 214, Birkhäuser/Springer Basel AG, Basel (2011)

Frank, R.L., Sabin, J.: Restriction theorems for orthonormal functions, Strichartz inequalities and uniform Sobolev estimates (2014). arxiv:1404.2817 (Preprint)

Frank, R.L., Simon, B.: Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory (to appear)

Laptev, A., Safronov, O.: Eigenvalue estimates for Schrödinger operators with complex potentials. Comm. Math. Phys. 292, 29–54 (2009)

Latushkin, Y., Sukhtayev, A.: The algebraic multiplicity of eigenvalues and the Evans function revisited. Math. Model. Nat. Phenom. 5(4), 269–292 (2010)

Martirosjan, R.M.: On the spectrum of the non-selfadjoint operator $$\Delta u+cu$$ Δ u + c u in three dimensional space. (Russian) Izv. Akad. Nauk Armyan. SSR. Ser. Fiz.-Mat. Nauk 10(1), 85–111 (1957)

Martirosjan, R.M.: On the spectrum of various perturbations of the Laplace operator in spaces of three or more dimensions. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 24, 897–920 (1960)

Murtazin, K.K.: Spectrum of the nonself-adjoint Schrödinger operator in unbounded regions. (Russian) Mat. Zametki 9, 19–26. English translation: Math. Notes 9(1971), 12–16 (1971)

Naĭmark, M.A.: Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis. (Russian) Trudy Moskov. Mat. Obšč. 3, 181–270 (1954)

Pavlov, B.S.: On a non-selfadjoint Schrödinger operator. (Russian) 1966 Probl. Math. Phys., No. 1, Spectral Theory and Wave Processes (Russian) pp. 102–132 Izdat. Leningrad. Univ., Leningrad

Pavlov, B.S.: On a non-selfadjoint Schrödinger operator. II. (Russian) 1967 Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian) pp. 133–157 Izdat. Leningrad. Univ., Leningrad

Safronov, O.: On a sum rule for Schrödinger operators with complex potentials. Proc. Am. Math. Soc. 138(6), 2107–2112 (2010)

Simon, B.: Trace Ideals and Their Applications, 2nd edn. Amer. Math. Soc, Providence (2005)

Simon, B.: Notes on infinite determinants of Hilbert space operators. Adv. Math. 24(3), 244–273 (1977)

Stepin, S.A.: Complex potentials: bound states, quantum dynamics and wave operators. Semigroups of operators - theory and applications, 287–297, Springer Proc. Math. Stat. 113, Springer, Cham (2015)

Stepin, S.A.: Estimate for the number of eigenvalues of the nonselfadjoint Schrödinger operator. (Russian) Dokl. Akad. Nauk 455(4), 394–397; translation in Dokl. Math. 89(2), 202–205 (2014)