Về các bất đẳng thức loại Hermite–Hadamard mới cho các hàm s-đối xứng

Hasan Barsam1, Sayyed Mehrab Ramezani2, Yamin Sayyari3
1Department of Mathematics, Faculty of Science, University of Jiroft, Jiroft, Iran
2Faculty of Technology and Mining, Yasouj University, Choram, Iran
3Department of Mathematics, Sirjan University of Technology, Sirjan, Iran

Tóm tắt

Trong bài báo này, chúng tôi đã thiết lập một số định nghĩa tích phân mới liên quan đến vế trái của bất đẳng thức Hermite–Hadamard. Bằng cách sử dụng định nghĩa này, chúng tôi đã thu được một số giới hạn mới cho các hàm mà đạo hàm của chúng có giá trị tuyệt đối là s-đối xứng.

Từ khóa

#bất đẳng thức Hermite–Hadamard #hàm s-đối xứng #định nghĩa tích phân

Tài liệu tham khảo

Adil Khan, M., Chu, Y.M., Khan, T.U., Khan, J.: Some inequalities of Hermite–Hadamard type for \(s\)-convex functions with applications. Open Math. 15, 1414–1430 (2017)

Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.M.: Hermite–Hadamard type inequalities for fractional integrals via Greens function. J. Inequal. Appl. 161, 1–15 (2018)

Barsam, H., Ramezani, S.M.: Some results on Hermite–Hadamard type inequalities with respect to fractional integrals. cjms.journals.umz. Articles in Press, Accepted Manuscript, Available Online from 13 January 2020

Barsam, H., Sattarzadeh, A.R.: Hermite–Hadamard inequalities for uniformly convex functions and its applications in means. Miskolc Math. Notes. 2, 1787–2413 (2020)

Barsam, H., Sattarzadeh, A.R.: Some results on Hermite–Hadamard inequalities. J. Mahani Math. Res. Cent. 9(2), 79–86 (2020)

Butt, S.I., Nadeem, M., Farid, G.: On Caputo fractional derivatives via exponential \(s\)-convex functions. Turk. J. Sci. 5(2), 140–146 (2020)

Chu, Y.M., Wang, G.D., Zhang, X.H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13, 725–731 (2010)

Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite–Hadamard Inequalities and Applications. Victoria University, RGMIA Monographs (2000)

Ekinci, A., Akdemir, A.O., Özdemir, M.E.: Integral inequalities for different kinds of convexity via classical inequalities. Turk. J. Sci. 5(3), 305–313 (2020)

Hudzik, H., Maligranda, L.: Some remarks on \(s\)-convex function. Aequat. Math. 48, 100–111 (1994)

Kavurmaci, H., Avci, M., Özdemir, M.E.: New inequalities of Hermite–Hadamard type for convex functions with applications. J. Inequal. Appl. 86, 1–11 (2011)

Kunt, M., Iscan, I.: Fractional Hermite–Hadamard–Fejer type inequalities for \(GA\)-convex functions. Turk. J. Inequal. 2(1), 1–20 (2018)

Mohebi, H., Barsam, H.: Some results on abstract convexity of functions. Math. Slovaca 68(5), 1001–1008 (2018)

Özdemir, M.E., Avci-Ardic, M., Kavurmaci-Önalan, H.: Hermite–Hadamard type inequalities for \(s\)-convex and \(s\)-concave functions via fractional integrals. Turk. J. Sci. I(I), 28–40 (2016)

Özdemir, M.E., Avci, M., Set, E.: On some inequalities of Hermite–Hadamard type via \(m\)-convexity. Appl. Math. Lett. 23(9), 1065–1070 (2010)

Özdemir, M.E., Ekinci, A., Akdemir, A.O.: Some new integral inequalities for functions whose derivatives of absolute values are convex and concave. TWMS J. Pure Appl. Math. 2(10), 212–224 (2019)

Özdemir, M.E., Set, E., Sarikaya, M.Z.: Some new Hadamard type inequalities for coordinated \(m\)-convex and \((\alpha, m)\)-convex functions. Hacet. J. Math. Stat. 40, 219–229 (2011)

Özdemir, M.E., Yildiz, C., Akdemir, A.O., Set, E.: On some inequalities for \(s\)-convex functions and applications. J. Inequal. Appl. 333, 1–11 (2013)

Retkes, Z.: Applications of the extended Hermite–Hadamard inequality. J. Inequal. Pure Appl. Math. 7(1), 1–7 (2006)

Toader, G.: Some generalizations of the convexity. Proc. Colloq. Approx. Optim. Univ. Cluj-Napoca, pp. 329–338 (1985)

Toader, G.: The hierarchy of convexity and some classic inequalities. J. Math. Inequal. 3(3), 305–313 (2009)

Zhang, X.M., Chu, Y.M.: The Hermite–Hadamard type inequality of \(GA\)-convex functions and its applications. J. Inequal. Appl. 2010(507560), 1–11 (2010)