On the motion of a large number of small rigid bodies in a viscous incompressible fluid

Journal de Mathématiques Pures et Appliquées - Tập 175 - Trang 216-236 - 2023
Eduard Feireisl1, Arnab Roy2, Arghir Zarnescu3,4,5
1Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567, Praha 1, Czech Republic
2Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
3BCAM, Basque Center for Applied Mathematics, Mazarredo 14, 48009 Bilbao, Bizkaia, Spain
4IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
5“Simion Stoilow” Institute of the Romanian Academy, 21 Calea Griviţei, 010702 Bucharest, Romania

Tài liệu tham khảo

He, 2019, A small solid body with large density in a planar fluid is negligible, J. Dyn. Differ. Equ., 31, 1671, 10.1007/s10884-018-9718-3 He, 2021, On the small rigid body limit in 3D incompressible flows, J. Lond. Math. Soc. (2), 104, 668, 10.1112/jlms.12443 Bravin Lacave, 2017, Small moving rigid body into a viscous incompressible fluid, Arch. Ration. Mech. Anal., 223, 1307, 10.1007/s00205-016-1058-z Ervedoza, 2023, Large time behaviour for the motion of a solid in a viscous incompressible fluid, Math. Ann., 385, 631, 10.1007/s00208-021-02351-y Dashti, 2011, The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius, Arch. Ration. Mech. Anal., 200, 285, 10.1007/s00205-011-0401-7 Iftimie, 2006, Two-dimensional incompressible viscous flow around a small obstacle, Math. Ann., 336, 449, 10.1007/s00208-006-0012-z Lacave, 2009, Two-dimensional incompressible viscous flow around a thin obstacle tending to a curve, Proc. R. Soc. Edinb., Sect. A, 139, 1237, 10.1017/S0308210508000632 Feireisl Judakov, 1974, The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Din. Sploš. Sredy, 249 Gunzburger, 2000, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2, 219, 10.1007/PL00000954 Galdi, 2002, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, 653, 10.1016/S1874-5792(02)80014-3 San Martín, 2002, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161, 113, 10.1007/s002050100172 Feireisl, 2003, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., 3, 419, 10.1007/s00028-003-0110-1 Feireisl Bogovskiĭ, 1980, Solutions of some problems of vector analysis, associated with the operators div and grad, vol. 1, 5 Galdi, 2011, Steady-state problems Diening, 2010, A decomposition technique for John domains, Ann. Acad. Sci. Fenn., Math., 35, 87, 10.5186/aasfm.2010.3506 Geißert, 2006, On the equation divu=g and Bogovskiĭ's operator in Sobolev spaces of negative order, vol. 168, 113