Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Về các đa tạp góc khoảnh tích cực của độ cong Ricci
Tóm tắt
Chúng tôi xây dựng các metric Riemann trên một số đa tạp góc khoảnh có độ cong Ricci dương. Cụ thể, chúng tôi xây dựng một đa tạp Riemann góc khoảnh không hình thức có độ cong Ricci dương.
Từ khóa
#Đa tạp #Độ cong Ricci #Góc khoảnh #Metric RiemannTài liệu tham khảo
Sha J. and Yang D., “Positive Ricci curvature on the connected sums of Sn × Sm,” J. Differential Geometry, 33, No. 1, 127–137 (1991).
Wraith D. J., “New connected sums with positive Ricci curvature,” Ann. Global Anal. Geom., 32, No. 4, 343–360 (2007).
Baskakov I. V., “Massey triple products in the cohomology of moment-angle complexes,” Russian Math. Surveys, 58, No. 5, 1039–1041 (2003).
Bukhshtaber V. M. and Panov T. E., Tori Actions in Topology and Combinatorics [in Russian], MTsNMO, Moscow (2004).
Bosio F. and Meersseman L., “Real quadrics in ℂn, complex manifolds and convex polytopes,” Acta Math., 197, No. 1, 53–127 (2006).
Sha J. and Yang D., “Positive Ricci curvature on compact simply connected 4-manifolds,” in: Differential Geometry. Part 3: Riemannian Geometry, Amer. Math. Soc., Providence, RI, 1993, pp. 529–538 (Proc. Symp. Pure Math.; V. 54).
Bazaĭkin Ya. V. and Matvienko I. V., “On the four-dimensional T2-manifolds of positive Ricci curvature,” Siberian Math. J., 48, No. 5, 778–783 (2007).
Davis M. W. and Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J., 62, No. 2, 417–451 (1991).
Gitler S. and Lopez de Medrano S., “Intersections of quadrics, moment-angle manifolds and connected sums,” Available at: arXiv:0901.2580v2 [math.GT].
Calabi E., “Métriques kähleriennes et fibres holomorphes,” Ann. Sci. École Norm. Sup. IV Sér., 12, No. 2, 269–294 (1979).
Bazaĭkin Ya. V., “On the new examples of complete noncompact Spin(7)-holonomy metrics,” Siberian Math. J., 48, No. 1, 8–25 (2007).
Cheeger J., “Some examples of manifolds of nonnegative curvature,” J. Differential Geometry, 8, No. 4, 623–628 (1973).
Poor W. A., “Some exotic spheres with positive Ricci curvature,” Math. Ann., 216, No. 3, 245–252 (1975).
Bérard-Bergery L., “Certains fibre’s á courbure de Ricci positive,” C. R. Math., Sci. Acad. Sci. Paris. Sér. A, B, 286, No. 20, 929–931 (1978).
Nash J. C., “Positive Ricci curvature on fibre bundles,” J. Differential Geometry, 14, No. 2, 241–254 (1979).
Gilkey P. B., Park J. H., and Tuschmann W., “Invariant metrics of positive Ricci curvature on principal bundles,” Math. Z., 227, No. 3, 455–463 (1998).
Gao L. Zh., “The construction of negatively Ricci curved manifolds,” Math. Ann., 271, No. 2, 185–208 (1985).
Besse A. L., Einstein Manifolds, Springer-Verlag, Berlin (2008).