On the modulation of water waves in the neighbourhood of kh ≈ 1.363

The Royal Society - Tập 357 Số 1689 - Trang 131-141 - 1977
R. S. Johnson1
1School of Mathematics, The University, Newcastle upon Tyne NE1 7RU, U. K.

Tóm tắt

In 1967, T. Brooke Benjamin showed that periodic wave-trains on the surface of water could be unstable. If the undisturbed depth is h , and k is the wavenumber of the fundamental, then the Stokes wave is unstable if kh ≥ σ 0 , where σ 0 ≈ 1.363. The instability is provided by the growth of waves with a wavenumber close to k . This result is associated with an almost resonant quartet wave interaction and can be obtained by examining the cubic nonlinearity in the nonlinear Schrodinger equation for the modulation of harmonic water waves: this term vanishes at kh = cr0. In this paper the multiple-scales technique is adapted in order to derive the appropriate modulation equation for the amplitude of the fundamental when kh is near to σ 0 . The resulting equation takes the form i A T - a 1 A ζζ - a 2 A | A | 2 + a 3 A | A | 4 + i( a 4 | A | 2 A ζ - a 5 A (| A | 2 ) ζ ) - a 6 T = 0 where ψ ζ = | A | 2 , and the a i are real numbers. [Coefficients a 3 - a 6 are given on kh ≈ 1.363 only.] This equation is uniformly valid in that it reduces to the classical non-linear Schrödinger equation in the appropriate limit and is correct when a 2 = 0, i.e. at kh = σ 0 . The equation is used to examine the stability of the Stokes wave and the new inequality for stability is derived: this now depends on the wave amplitude. If the wave is unstable then it is expected that soli to ns will be produced: the simplest form of soliton is therefore examined by constructing the corresponding ordinary differential equation. Some comments are made concerning the phase-plane of this equation, but more analytical details are extracted by treating the new terms as perturbations of the classical Schrodinger soliton. It is shown that the soliton is both flatter (symmetrically) and skewed forward, although the skewing eventually gives way to an oscillation above the mean level.

Từ khóa


Tài liệu tham khảo

10.1098/rspa.1967.0123

10.1017/S002211206700045X

10.1002/sapm1967461133

10.1098/rspa.1974.0076

Grimshaw R. H. J. 1976 School of Mathematical Sciences University of Melbourne Res. Rep. 32/1975.

10.1143/JPSJ.33.805

10.1017/S0022112070001064

10.1098/rspa.1976.0015

Kaup D. J., 1976, S IA M J. appl, Math., 31, 121

10.1098/rspa.1965.0019

10.1017/S0022112065000745

10.1017/S0022112067000424

Zakharov V. E., 1972, Soviet Phys, JE T P, 34, 62