On the method of moving planes and the sliding method

Henri Berestycki1, Louis Nirenberg2
1Lab. d'Analyse Numerique, Univ. Paris VI, Paris, France
2Courant Institute, New York University, New York#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

H Amann, M. G. Crandall, On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. J. 27 (1978) 779?790.

A. Bakelman, Convex functions and elliptic equations, Book, to appear.

H. Berestycki, L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations. J. Geometry and Physics 5 (1988) 237?275.

H. Berestycki, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, Analysis et cetera, ed. P. Rabinowitz et al., Academic Pr. (1990) 115?164.

H. Berestycki, Travelling front solutions of semilinear equations inn dimensions, to appear in volume dedicated to J. L. Lions.

H. Berestycki, KPP in higher dimensions, to appear.

H. Berestycki, L. Nirenberg, S. R. S. Varadhan, On principal eigenvalues of second order elliptic operators in general domains, to appear.

J. M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris, Ser. A, 265 (1967) 333?336.

L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math. 38 (1984) 369?402.

W. Craig, P. Sternberg, Symmetry of solitary waves, Comm. P.D.E. 13 (1988) 603?633.

S. Y. Cheng, S. T. Yau, On the regularity of the Monge-Ampère equation det(?2 u/?x i ?x j =F(x,u), Comm. Pure Appl. Math. 30 (1977) 41?68.

B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209?243.

B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in ? n , Math. Anal. and Applic., Part A, Advances in Math. Suppl. Studies 7A, ed. L. Nachbin, Academic Press (1981) 369?402.

D. Gilbarg, N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, 2nd Ed'n. Springer Verlag, 1983.

Li, Cong Ming, Monotonicity and symmetry of solutions of fully nonlinear elliptic equation I, Bounded domains, Comm. Partial Diff. Eq'ns., to appear.

Li, Cong Ming, Ibid., Monotonicity and symmetry of solutions of fully nonlinear elliptic equation II, Unbounded domains, Comm. Part. Diff. Eq'ns., to appear.

P. L. Lions, A remark on Bony's maximum principle, Proc. Amer. Math. Soc., 88 (1983) 503?508.

J. Serrin, A symmetry problem in potential theory. Arch. Rat. Mech. 43 (1971) 304?318.