On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers
Tài liệu tham khảo
Kodur, 2007, Critical factors governing the fire performance of high strength concrete systems, Fire Saf. J., 42, 482, 10.1016/j.firesaf.2006.10.006
Khoury, 2000, Effect of fire on concrete and concrete structures, Prog. Struct. Eng. Mater., 2, 429, 10.1002/pse.51
Liu, 2017, Multi-response optimization of post-fire performance of strain hardening cementitious composite, Cem. Concr. Compos., 80, 80, 10.1016/j.cemconcomp.2017.03.001
Bažant, 1997, 155
Liu, 2017, Fire resistance of strain hardening cementitious composite with hybrid PVA and steel fibers, Constr. Build. Mater., 135, 600, 10.1016/j.conbuildmat.2016.12.204
Heo, 2012, Relationship between inter-aggregate spacing and the optimum fiber length for spalling protection of concrete in fire, Cem. Concr. Res., 42, 549, 10.1016/j.cemconres.2011.12.002
Dwaikat, 2010, Fire induced spalling in high strength concrete beams, Fire. Technol, 46, 251, 10.1007/s10694-009-0088-6
Khoury, 2008, Polypropylene fibres in heated concrete. Part 2: pressure relief mechanisms and modelling criteria, Mag. Concr. Res., 60, 189, 10.1680/macr.2007.00042
Bentz, 2000, Fibers, percolation, and spalling of high-performance concrete, ACI Mater. J., 97, 351
Mazzucco, 2015, Numerical simulation of polypropylene fibres in concrete materials under fire conditions, Comput. Struct., 154, 17, 10.1016/j.compstruc.2015.03.012
Zeiml, 2006, How do polypropylene fibers improve the spalling behavior of in-situ concrete?, Cem. Concr. Res., 36, 929, 10.1016/j.cemconres.2005.12.018
Pistol, 2011, 5
Ozawa, 2014, Effects of various fibres on high-temperature spalling in high-performance concrete, Constr. Build. Mater., 71, 83, 10.1016/j.conbuildmat.2014.07.068
Kalifa, 2001, High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure, Cem. Concr. Res., 31, 1487, 10.1016/S0008-8846(01)00596-8
Jansson, 2013
Li, 2016, 145
Hager, 2010, The impact of the amount and length of fibrillated polypropylene fibres on the properties of HPC exposed to high temperature, Arch. Civ. Eng., 56, 57, 10.2478/v.10169-010-0003-z
Bošnjak, 2013, Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup, Cem. Concr. Res., 53, 104, 10.1016/j.cemconres.2013.06.005
Klingsch, 2014
Abràmoff, 2004, Image processing with ImageJ, Biophoton. Int., 11, 36
Wu, 2015, Influence of drying-induced microcracking and related size effects on mass transport properties of concrete, Cem. Concr. Res., 68, 35, 10.1016/j.cemconres.2014.10.018
Zhou, 2012, Geometry of crack network and its impact on transport properties of concrete, Cem. Concr. Res., 42, 1261, 10.1016/j.cemconres.2012.05.017
Wang, 2016, Characteristics of concrete cracks and their influence on chloride penetration, Constr. Build. Mater., 107, 216, 10.1016/j.conbuildmat.2016.01.002
Torrent, 1992, A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site, Mater. Struct., 25, 358, 10.1007/BF02472595
Jacobs, 2006, Non destructive testing of the concrete cover–evaluation of permeability test data
Noumowe, 2005, Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 °C, Cem. Concr. Res., 35, 2192, 10.1016/j.cemconres.2005.03.007
Folias, 1998, Predicting crack initiation in composite material systems due to a thermal expansion mismatch, Int. J. Fract., 93, 335, 10.1023/A:1017160807854
Grassl, 2010, Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar, Cem. Concr. Res., 40, 85, 10.1016/j.cemconres.2009.09.012
Lu, 1991, Toughening of MoSi2 with a ductile (niobium) reinforcement, Acta Metall. Mater., 39, 1853, 10.1016/0956-7151(91)90154-S
Ringot, 2001, About the analysis of microcracking in concrete, Cem. Concr. Compos., 23, 261, 10.1016/S0958-9465(00)00056-1
Bossa, 2015, Micro- and nano-X-ray computed-tomography: a step forward in the characterization of the pore network of a leached cement paste, Cem. Concr. Res., 67, 138, 10.1016/j.cemconres.2014.08.007