On the maximum principle for relaxed control problems of nonlinear stochastic systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed, N.U., Charalambous, C.D.: Stochastic minimum principle for partially observed systems subject to continuous and jump diffusion processes and driven by relaxed controls. SIAM J. Control Optim. 51(4), 3235–3257 (2013)
Al-Hussein, A., Gherbal, B.: Necessary and sufficient optimality conditions for relaxed and strict control of forward-backward doubly SDEs with jumps under full and partial information. J. Syst. Sci. Complex. 33(6), 1804–1846 (2020)
Bahlali, K., Mezerdi, M., Mezerdi, B.: Existence of optimal controls for systems governed by mean-field stochastic differential equations. Afr. Stat. 9(1), 627–645 (2014)
Bahlali, K., Mezerdi, M., Mezerdi, B.: Existence and optimality conditions for relaxed mean-field stochastic control problems. Syst. Control Lett. 102, 1–8 (2017)
Bahlali, K., Mezerdi, M., Mezerdi, B.: On the relaxed mean-field stochastic control problem. Stoch. Dyn. 18(3), 1850024 (2018)
Bahlali, S.: Necessary and sufficient optimality conditions for relaxed and strict control problems. SIAM J. Control Optim. 47(4), 2078–2095 (2008)
Bahlali, S., Djehiche, B., Mezerdi, B.: The relaxed stochastic maximum principle in singular optimal control of diffusions. SIAM J. Control Optim. 46(2), 427–444 (2007)
Bahlali, S., Djehiche, B., Mezerdi, B.: Approximation and optimality necessary conditions in relaxed stochastic control problems. J. Appl. Math. Stoch. Anal. 2006, 72762 (2006)
Becker, H., Mandrekar, V.: On the existence of optimal random controls. J. Math. Mech. 18, 1151–1166 (1969)
Bensoussan, A.: Lectures on stochastic control. Nonlinear filtering and stochastic control. In: Lecture Notes in Math., Cortona, 1981, vol. 972, pp. 1–62. Springer, Berlin (1982)
Borkar, V.S.: Optimal Control of Diffusion Processes. Pitman Research Notes in Math. Series, vol. 203. Longman, Harlow (1989)
Dou, C., Wei, L., Liu, X.: Stochastic maximum principle for delayed backward doubly relaxed stochastic control problem and applications. In: 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), Chongqing City, China, 2020, pp. 343–351. https://doi.org/10.1109/IICSPI51290.2020.9332341
El Karoui, N., Du Huu, N., Jeanblanc-Picqué, M.: Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics 20(3), 169–219 (1987)
El Karoui, N., Méléard, S.: Martingale measures and stochastic calculus. Probab. Theory Relat. Fields 84(1), 83–101 (1990)
Fleming, W.H.: Generalized solutions in optimal stochastic control. In: Differential Games and Control Theory II, Proceedings of 2nd Conference, Univ. of Rhode Island, Kingston, RI, 1976. Lect. Notes in Pure and Appl. Math., vol. 30, pp. 147–165. Dekker, New York (1977)
Haussmann, U.G.: General necessary conditions for optimal control of stochastic systems. Math. Program. Stud. 6, 30–48 (1976)
Haussmann, U.G.: Existence of optimal Markovian controls for degenerate diffusions. In: Stochastic Differential Systems, Bad Honnef, 1985. Lect. Notes Control Inf. Sci., vol. 78, pp. 171–186. Springer, Berlin (1986)
Haussmann, U.G., Lepeltier, J.P.: On the existence of optimal controls. SIAM J. Control Optim. 28(4), 851–902 (1990)
Hu, Y., Peng, S.: A stability theorem of backward stochastic differential equations and its application. C. R. Acad. Sci., Ser. 1 Math. 324(9), 1059–1064 (1997)
Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1989)
Kurtz, T.G., Stockbridge, R.H.: Existence of Markov controls and characterization of optimal Markov controls. SIAM J. Control Optim. 36(2), 609–653 (1998)
Kushner, H.J.: Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim. 10, 550–565 (1972)
Kushner, H.J.: Existence results for optimal stochastic controls. Existence theory in the calculus of variations and optimal control. J. Optim. Theory Appl. 15, 347–359 (1975)
Méléard, S.: Representation and approximation of martingale measures. In: Stochastic Partial Differential Equations and Their Applications, pp. 188–199. Springer, Berlin (1992)
Mezerdi, B.: Necessary conditions for optimality for a diffusion with a non-smooth drift. Stochastics 24(4), 305–326 (1988)
Mezerdi, B., Bahlali, S.: Approximation in optimal control of diffusion processes. Random Oper. Stoch. Equ. 8(4), 365–372 (2000)
Mezerdi, B., Bahlali, S.: Necessary conditions for optimality in relaxed stochastic control problems. Stoch. Stoch. Rep. 73(3–4), 201–218 (2002)
Mezerdi, M.A.: Compactification in optimal control of McKean-Vlasov stochastic differential equations. Optim. Control Appl. Methods 42(4), 1161–1177 (2021)
Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)
Pham, H.: Continuous-time stochastic control and optimization with financial applications. In: Series Stochastic Modeling and Applied Probability, vol. 61. Springer, Berlin (2009)
Redjil, A., Gherbal, H.B., Kebiri, O.: Existence of relaxed stochastic optimal control for $G$-SDEs with controlled jumps. Stoch. Anal. Appl. 41(1), 115–133 (2023)
Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)
Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV–1984. Lecture Notes in Math., vol. 1180, pp. 265–439. Springer, Berlin (1986)
Yinggu, C., Tianyang, N., Zhen, W.: The stochastic maximum principle for relaxed control problem with regime-switching. Syst. Control Lett. 169, 105391 (2022)
Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations, vol. 43. Springer, Berlin (1999)
Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory, vol. 304. Am. Math. Soc., Providence (1980)