On the low-rank approximation by the pivoted Cholesky decomposition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bach, 2002, Kernel independent component analysis, J. Mach. Learn. Res., 3, 1
Bebendorf, 2000, Approximation of boundary element matrices, Numer. Math., 86, 565, 10.1007/PL00005410
Bebendorf, 2003, Adaptive low-rank approximation of collocation matrices, Computing, 70, 1, 10.1007/s00607-002-1469-6
Beebe, 1977, Simplifications in the generation and transformation of two-electron integrals in molecular calculations, Int. J. Quantum Chem., 7, 683, 10.1002/qua.560120408
Boman, 2008, Method specific Cholesky decomposition: Coulomb and exchange energies, J. Chem. Phys., 129, 134107, 10.1063/1.2988315
Dongarra, 1979
Goreinov, 1997, Matrix-free iterative solution strategies for large dense linear systems, Numer. Linear Algebra Appl., 4, 273, 10.1002/(SICI)1099-1506(199707/08)4:4<273::AID-NLA97>3.0.CO;2-T
Goreinov, 1997, A theory of pseudoskeleton approximations, Linear Algebra Appl., 261, 1, 10.1016/S0024-3795(96)00301-1
Hammarling, 2007, LAPACK-style codes for pivoted Cholesky and QR updating, vol. 4699, 137
Harbrecht, 2008, Multilevel frames for sparse tensor product spaces, Numer. Math., 110, 199, 10.1007/s00211-008-0162-x
Higham, 1987, A survey of condition number estimation for triangular matrices, SIAM Rev., 29, 575, 10.1137/1029112
Higham, 1990, Analysis of the Cholesky decomposition of a semi-definite matrix, 161
Higham, 2009, Cholesky factorization, vol. 1, 251
Kaltenbacher, 2007, Regularization by truncated Cholesky factorization: a comparison of four different approaches, J. Complexity, 23, 225, 10.1016/j.jco.2006.07.003
Koch, 2003, Reduced scaling in electronic structure calculations using Cholesky decompositions, J. Chem. Phys., 118, 9481, 10.1063/1.1578621
Lehoucq, 1998
OʼNeal, 2004, Application of Cholesky-like matrix decomposition methods to the evaluation of atomic orbital integrals and integral derivatives, Int. J. Quantum Chem., 36, 673, 10.1002/qua.560360602
Schütz, 2002, A new, fast, semi-direct implementation of linear scaling local coupled cluster theory, Phys. Chem. Chem. Phys., 4, 3941, 10.1039/B203994J
Schütz, 2001, Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD), J. Chem. Phys., 114, 661, 10.1063/1.1330207
Schütz, 1999, Low-order scaling local electron correlation methods. I. Linear scaling local MP2, J. Chem. Phys., 111, 5691, 10.1063/1.479957
Schwab, 2003, Sparse finite elements for elliptic problems with stochastic loading, Numer. Math., 95, 707, 10.1007/s00211-003-0455-z
Schwab, 2006, Karhunen–Loéve approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217, 100, 10.1016/j.jcp.2006.01.048
Vahtras, 1993, Integral approximations for LCAO-SCF calculations, Chem. Phys. Lett., 213, 514, 10.1016/0009-2614(93)89151-7
von Petersdorff, 2006, Sparse wavelet methods for operator equations with stochastic data, Appl. Math., 51, 145, 10.1007/s10492-006-0010-1
Weigend, 2002, Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations, J. Chem. Phys., 116, 3175, 10.1063/1.1445115
Werner, 2003, Fast linear scaling second-order Møller–Plesset perturbation theory (MP2) using local and density fitting approximations, J. Chem. Phys., 118, 8149, 10.1063/1.1564816
Wilson, 1990, Universal basis sets and Cholesky decomposition of the two-electron integral matrix, Comput. Phys. Commun., 58, 71, 10.1016/0010-4655(90)90136-O
Wright, 1999, Modified Cholesky factorizations in interior-point algorithms for linear programming, SIAM J. Optim., 9, 1159, 10.1137/S1052623496304712