On the long-term memory characteristic in land surface air temperatures: How well do CMIP6 models perform?
Tài liệu tham khảo
Blender, 2006, Millennial climate variability: GCM-simulation and greenland ice cores, Geophys. Res. Lett., 33, L04710, 10.1029/2005GL024919
Chen, 2007, Long-range correlations in daily relative humidity fluctuations: a new index to characterize the climate regions over China, Geophys. Res. Lett., 34, L07804, 10.1029/2006GL027755
Chen, 2002, Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E, 65, 10.1103/PhysRevE.65.041107
Dangendorf, 2014, Evidence for long-term memory in sea level, Geophys. Res. Lett., 41, 5530, 10.1002/2014GL060538
Dong, 2021, Whether the CMIP5 models can reproduce the long-range correlation of daily precipitation?, Front. Environ. Sci., 9, 10.3389/fenvs.2021.656639
Eichner, 2003, Power-law persistence and trends in the atmosphere: a detailed study of long temperature records, Phys. Rev. E, 68, 10.1103/PhysRevE.68.046133
Fraedrich, 2003, Scaling of atmosphere and ocean temperature correlations in observations and climate models, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.108501
Franzke, 2020, The structure of climate variability across scales, Rev. Geophys., 58, 10.1029/2019RG000657
Fredriksen, 2017, Long-range persistence in global surface temperatures explained by linear multibox energy balance models, J. Clim., 30, 7157, 10.1175/JCLI-D-16-0877.1
Govindan, 2004, Long-term correlations and multifractality in surface wind speed, Europhys. Lett., 68, 184, 10.1209/epl/i2004-10188-3
Govindan, 2002, Global climate models violate scaling of the observed atmospheric variability, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.028501
Kantelhardt, 2001, Detecting long-range correlations with detrended fluctuation analysis, Phys. A (Amsterdam, Neth.), 295, 441, 10.1016/S0378-4371(01)00144-3
Király, 2004, Detrended fluctuation analysis of daily temperature records: geographic dependence over Australia, Meteorol. Atmos. Phys., 88, 119, 10.1007/s00703-004-0078-7
Koscielny-Bunde, 1998, Indication of a universal persistence law governing atmospheric variability, Phys. Rev. Lett., 81, 729, 10.1103/PhysRevLett.81.729
Lennartz, 2011, Distribution of natural trends in long-term correlated records: a scaling approach, Phys. Rev. E, 84, 10.1103/PhysRevE.84.021129
Lepreti, 2021, Scaling properties and persistence of long-term solar activity, Atmosphere, 12, 733, 10.3390/atmos12060733
Li, 2022, Different climate response persistence causes warming trend unevenness at continental scales, Nat. Clim. Change, 12, 343, 10.1038/s41558-022-01313-9
Liu, 2000, The hierarchical structure of climate series, Acta Meteorol. Sin., 58, 110
Liu, 2013, The long-term memory of climatic changes: theoretical foundation and observational confirmation, Sci. Sin. Phys. Mech. Astron., 43, 1327, 10.1360/132013-250
Ludescher, 2016, Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica, Clim. Dyn., 46, 263, 10.1007/s00382-015-2582-5
McKenna, 2020, Indian ocean dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO, Sci. Rep., 10, 11500, 10.1038/s41598-020-68268-9
Monetti, 2003, Long-term persistence in the sea surface temperature fluctuations, Phys. A (Amsterdam, Neth.), 320, 581, 10.1016/S0378-4371(02)01662-X
Peng, 1994, Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685, 10.1103/PhysRevE.49.1685
Qiu, 2020, Understanding long-term memory in global mean temperature: an attribution study based on model simulations, Atmos. Ocean. Sci. Lett., 13, 485, 10.1080/16742834.2020.1778418
Talkner, 2000, Power spectrum and detrended fluctuation analysis: application to daily temperatures, Phys. Rev. E, 62, 150, 10.1103/PhysRevE.62.150
Taylor, 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res.: Atmos., 106, 7183, 10.1029/2000JD900719
Vyushin, 2004, Volcanic forcing improves atmosphere-ocean coupled general circulation model scaling performance, Geophys. Res. Lett., 31, L10206, 10.1029/2004GL019499
Xie, 2019, Is long-term climate memory important in temperature/precipitation predictions over China?, Theor. Appl. Climatol., 137, 459, 10.1007/s00704-018-2608-0
Xiong, 2019, On memory and non-memory parts of surface air temperatures over China: can they be simulated by decadal hindcast experiments in CMIP5?, Clim. Dyn., 52, 4515, 10.1007/s00382-018-4395-9
Ye, 2013, Resampling interpolation methods of meteorological remote sensing image and grid point field, Comput. Eng. Appl., 49, 237
Yuan, 2015, On the long-term climate memory in the surface air temperature records over Antarctica: a nonnegligible factor for trend evaluation, J. Clim., 28, 5922, 10.1175/JCLI-D-14-00733.1
Yuan, 2013, Long-term memory in climate variability: a new look based on fractional integral techniques, J. Geophys. Res.: Atmos., 118, 12962, 10.1002/2013JD020776
Yuan, 2014, Extracting climate memory using fractional integrated statistical model: a new perspective on climate prediction, Sci. Rep., 4, 6577, 10.1038/srep06577
Yuan, 2010, Different scaling behaviors in daily temperature records over China, Phys. A (Amsterdam, Neth.), 389, 4087, 10.1016/j.physa.2010.05.026
Yuan, 2019, On climate prediction: how much can we expect from climate memory?, Clim. Dyn., 52, 855, 10.1007/s00382-018-4168-5
Zhang, 2015, Modified climate with long term memory in tree ring proxies, Environ. Res. Lett., 10, 10.1088/1748-9326/10/8/084020
Zhang, 2011, Comparison of detrending methods for fluctuation analysis in hydrology, J. Hydrol. (Amsterdam, Neth.), 400, 121, 10.1016/j.jhydrol.2011.01.032
Zhao, 2021, Evaluation of the performance of CMIP5 models to simulate land surface air temperature based on long-range correlation, Front. Environ. Sci., 9, 10.3389/fenvs.2021.628999
Zhu, 2010, A demonstration of long-term memory and climate predictability, J. Clim., 23, 5021, 10.1175/2010JCLI3370.1