On the link between natural emergence and manifestation of a fundamental non-Gaussian geostatistical property: Asymmetry
Tài liệu tham khảo
Bárdossy, 2006, Copula-based geostatistical models for groundwater quality parameters, Water Resour. Res., 42, 1, 10.1029/2005WR004754
Bárdossy, 2008, Geostatistical interpolation using copulas, Water Resour. Res., 44, 10.1029/2007WR006115
Bárdossy, 2012, Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, 1, 10.1029/2011WR011524
Gómez-Hernández, 1998, To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology, Adv. Water Resour., 21, 47, 10.1016/S0309-1708(96)00031-0
Gringarten, 2001, Teacher’s aide variogram interpretation and modeling, Math. Geol., 33, 507, 10.1023/A:1011093014141
Guthke, P., 2013. Non-multi Gaussian Spatial Structures: Process Driven Natural Genesis, Manifestation, Modeling Approaches, and Influences on Dependent Processes, vol. Heft 220, Stuttgart, mitteilung edn., ISBN 9783942036245.
Haslauer, C., 2011. Analysis of Real-World Spatial Dependence of Subsurface Hydraulic Properties Using Copulas With a Focus on Solute Transport Behaviour, Institut für Wasserbau - Mitteilungen, heft 206 edn., ISBN 9783942036108.
Haslauer, 2012, Effects of non-Gaussian copula-based hydraulic conductivity fields on macrodispersion, Water Resour. Res., 48, 10.1029/2011WR011425
Joe, 1997, Multivariate models and dependence concepts, Analysis, 418
Journel, 1989, Non-Gaussian data expansion in the Earth Sciences, Terra Nova, 1, 123, 10.1111/j.1365-3121.1989.tb00344.x
Journel, 1997, Rank order geostatistics: a proposal for a unique coding and common processing of diverse data, 174
Lawrance, 1991, Directionality and reversibility in time series, Int. Statist. Rev./Rev. Int. Statist., 59, 67
Lawrance, 1985, Modelling and residual analysis of nonlinear autoregressive time series in exponential variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 47, 165
Li, J., 2010. Application of copulas as a new geostatistical tool, Institut für Wasserbau - Mitteilungen, heft 187 edn., ISBN 9783933761910, URL http://elib.uni-stuttgart.de/opus/volltexte/2010/5133/.
Mariethoz, 2010, The Direct Sampling method to perform multiple-point geostatistical simulations, Water Resour. Res., 46, 10.1029/2008WR007621
Nelsen, 2013
Neyman, 2013, Statistical approach to problems of cosmology, J. R. Stat. Soc. Ser. B Stat. Methodol., 20, 1, 10.1111/j.2517-6161.1958.tb00272.x
Rossi, 1992, Geostatistical tools for modeling and interpreting ecological spatial dependence, Ecol. Monograph, 62, 277, 10.2307/2937096
Scheidt, 2011, A multi-resolution workflow to generate high-resolution models constrained to dynamic data, Comput. Geosci., 15, 545, 10.1007/s10596-011-9223-9
Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229
Srivastava, 1989, Robust measures of spatial continuity, 295
Stoyan, 1992, Statistical estimation of model parameters of planar neyman-scott cluster processes, Metrika, 39, 67, 10.1007/BF02613983
Therrien, 1996, Three-dimensional analysis of variably-saturated flow and solute transport in discretely- fractured porous media, J. Contam. Hydrol., 23, 1, 10.1016/0169-7722(95)00088-7
Zinn, 2003, When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields, Water Resour. Res., 39, 1, 10.1029/2001WR001146