On the interaction between carbon nanomaterials and lipid biomembranes

Journal of Molecular Liquids - Tập 295 - Trang 111714 - 2019
Mert Atilhan1,2, Luciano T. Costa3, Santiago Aparicio4
1Department of Chemical Engineering, Texas A&M University at Qatar, Doha, Qatar
2Gas and Fuels Research Center, Texas A&M University, College Station, TX, USA
3Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
4Department of Chemistry, University of Burgos, 09001 Burgos, Spain

Tài liệu tham khảo

Choudhary, 2014, Carbon nanomaterials: a review, 709 Ni, 2016, Carbon nanomaterials in different dimensions for electrochemical energy storage, Adv. Energy Mater., 6, 10.1002/aenm.201600278 Notarianni, 2016, Synthesis and applications of carbon nanomaterials for energy generation and storage, Beilstein J. Nanotechnol., 7, 149, 10.3762/bjnano.7.17 Yang, 2019, Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review, Carbon, 141, 467, 10.1016/j.carbon.2018.10.010 Xu, 2018, Carbon nanomaterials for advanced lithium sulfur batteries, Nanotoday, 19, 84, 10.1016/j.nantod.2018.02.006 Zhai, 2017, Carbon nanomaterials in tribology, Carbon, 119, 150, 10.1016/j.carbon.2017.04.027 Chen, 2015, Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery, J. Control. Release, 210, 230, 10.1016/j.jconrel.2015.04.021 Erol, 2018, Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications, Nanomed. Nanotechnol., 14, 2433, 10.1016/j.nano.2017.03.021 Pasinszki, 2017, Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis, Sensors, 17, 1919, 10.3390/s17081919 Thines, 2017, Application potential of carbon nanomaterials in water and wastewater treatment: a review, J. Taiwan Inst. Chem. E., 72, 116, 10.1016/j.jtice.2017.01.018 Babu, 2017, Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials, J. Phys. Chem. C, 121, 616, 10.1021/acs.jpcc.6b11686 Laux, 2018, Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems, Environ. Sci. Nano., 5, 48, 10.1039/C7EN00594F Chen, 2018, Toxicity of carbon nanomaterials to plants, animals and microbes: recent progress from 2015-present, Chemosphere, 206, 255, 10.1016/j.chemosphere.2018.05.020 Ema, 2017, A review of toxicity studies on graphene-based nanomaterials in laboratory animals, Regul. Toxicol. Pharmacol., 85, 7, 10.1016/j.yrtph.2017.01.011 De Marchi, 2018, An overview of graphene materials: properties, applications and toxicity on aquatic environments, Sci. Total Environ., 631-632, 1440, 10.1016/j.scitotenv.2018.03.132 Ema, 2016, Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review, Nanotoxicology, 10, 391, 10.3109/17435390.2015.1073811 Jia, 2005, Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol., 39, 1378, 10.1021/es048729l Magrez, 2006, Cellular toxicity of carbon – based nanomaterials, Nano Lett., 6, 1121, 10.1021/nl060162e Fukushima, 2018, Carcinogenicity of multi-walled nanotubes: challenging issue on hazard assessment, J. Occup. Health, 60, 10, 10.1539/joh.17-0102-RA Li, 2015, Effects of physicochemical properties of nanomaterials on their toxicity, J. Biomed Mater Res Part A, 103A, 2499, 10.1002/jbm.a.35384 Bacchetta, 2018, Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist?, Nanotoxicology, 12, 201, 10.1080/17435390.2018.1430258 Sergio, 2013, Fullerenes toxicity and electronic properties, Environ. Chem. Lett., 11, 105, 10.1007/s10311-012-0387-x Jensen, 1996, Biological applications of fullerenes, Bioorg. Med. Chem., 4, 1, 10.1016/0968-0896(96)00081-8 Wong-Ekkabut, 2008, Computer simulation study of fullerene translocation through lipid membranes, Nat. Nanotechnol., 3, 363, 10.1038/nnano.2008.130 Zhang, 2013, Effect of self-assembly of fullerene nano-particles on lipid membrane, PLoS One, 8, e77436, 10.1371/journal.pone.0077436 Madani, 2013, A concise review of carbon nanotube’s toxicology, Nano Rev, 4, 10.3402/nano.v4i0.21521 Liu, 2013, Understand the toxicity of carbon nanotubes, Acc. Chem. Res., 46, 702, 10.1021/ar300028m Francis, 2018, Toxicity of carbon nanotubes: a review, Toxicol. Ind. Health, 34, 200, 10.1177/0748233717747472 Zhou, 2017, Multi-walled carbon nanotubes: a cytotoxicity study in relation to functionalization, dose and dispersion, Toxicol. in Vitro, 42, 292, 10.1016/j.tiv.2017.04.027 Kane, 2018, The asbestos-carbon nanotube analogy: an update, Toxicol. Appl. Pharm., 361, 68, 10.1016/j.taap.2018.06.027 Chernova, 2017, Long-fiber carbon nanotubes replicate asbestos-induced mesothelioma with disruption of the tumor suppressor gene Cdkn2a [Ink4a/Arf], Curr. Biol., 21, 3302, 10.1016/j.cub.2017.09.007 Nagai, 2011, PNAS, 6, E1330, 10.1073/pnas.1110013108 Guo, 2014, Assesment of the toxic potential of graphene family nanomaterials, J. Food Drug Anal., 22, 105, 10.1016/j.jfda.2014.01.009 Ou, 2016, Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms, Part. Fibre Toxicol., 13, 57, 10.1186/s12989-016-0168-y Pelin, 2017, Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes, Sci. Rep., 7, 10.1038/srep40572 Gies, 2019, The impact of processing on the citotoxicity of graphene oxide, Nanoscale Adv, 10.1039/C8NA00178B Hianu, 2014, Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells, Int. J. Nanomedicine, 9, 1979, 10.2147/IJN.S58661 Contini, 2018, Nanoparticle-membrane interactions, J. Exp. Nanosci., 13, 62, 10.1080/17458080.2017.1413253 Tu, 2013, Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nature Nanotechnol, 8, 594, 10.1038/nnano.2013.125 Guo, 2015, Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys., 10, 10.1007/s11467-014-0440-2 Zhu, 2016, Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles, Proc. Natl. Acad. Sci. U. S. A., 113, 12374, 10.1073/pnas.1605030113 Wong-Ekkabut, 2008, Computer simulation study of fullerene translocation through lipid membranes, Nature Nanotechnol, 3, 363, 10.1038/nnano.2008.130 Mao, 2014, Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets, Biomaterials, 35, 6069, 10.1016/j.biomaterials.2014.03.087 Chen, 2016, Interaction of graphene and its oxide with lipid membrane: a molecular dynamics simulation study, J. Phys.Chem. C, 120, 6225, 10.1021/acs.jpcc.5b10635 Gupta, 2017, Molecular dynamics simulation study of translocation of fullerene C60 through skin bilayer: effect of concentration on barrier properties, Nanoscale, 9, 4114, 10.1039/C6NR09186E Wu, 2014, CHARMM-GUI membrane builder toward realistic biological membrane simulations, J. Comput. Chem., 35, 1997, 10.1002/jcc.23702 Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869 Boonstra, 2016, CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state, J. Phys. Chem. B, 120, 3692, 10.1021/acs.jpcb.6b01316 Jo, 2017, Molecular dynamics simulation of cytotoxicity of graphene nanosheets to blood-coagulation protein, Biointerphases, 12, 01A403, 10.1116/1.4977076 Li, 2013, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites, Proc. Natl. Acad. Sci. U. S. A., 110, 12295, 10.1073/pnas.1222276110 Klauda, 2010, Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types, J. Phys. Chem. B, 114, 7830, 10.1021/jp101759q Pastor, 2011, Development of the CHARMM force field for lipids, J. Phys. Chem. Lett., 2, 1526, 10.1021/jz200167q Harvey, 2009, ACEMD: accelerated molecular dynamics simulations in the microseconds timescale, J. Chem. Theory Comput., 5, 1632, 10.1021/ct9000685 Izaguirre, 2001, Langevin stabilization of molecular dynamics, J. Chem. Phys., 114, 2090, 10.1063/1.1332996 Berendsen, 1984, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684, 10.1063/1.448118 Madej, 2015, A parameterization of cholesterol for mixed lipid bilayer simulation within the amber lipid14 force field, J. Phys. Chem. B, 119, 12424, 10.1021/acs.jpcb.5b04924 Shirts, 2013, Simple quantitative tests to validate sampling from thermodynamic ensembles, J. Chem. Theor. Comput., 9, 909, 10.1021/ct300688p Lindahl, 2000, Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations, Biophys. J., 79, 426, 10.1016/S0006-3495(00)76304-1 Chen, 2016, Molecular dynamics simulations of the permeation of bisphenol A and pore formation in a lipid membrane, Sci. Rep., 6 Ercan, 2018, Molecular dynamics modeling of methylene blue−DOPC lipid bilayer interactions, Langmuir, 34, 4314, 10.1021/acs.langmuir.8b00372 Darden, 1993, Particle mesh Ewald: an N·log[N] method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397 Guixa-González, 2014, MEMBPLUGIN: studying membrane complexity in VMD, Bioinformatics, 30, 1478, 10.1093/bioinformatics/btu037 Ferreira, 2013, Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H–13C NMR and MD simulation studies, Phys. Chem. Chem. Phys., 15, 1976, 10.1039/C2CP42738A