On the integrability and perturbation of three-dimensional fluid flows with symmetry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abraham, R., and Marsden, J. E. [1978].Foundations of Mechanics. Addison-Wesley: Reading, MA.
Arnold, V. I. [1965]. Sur la topologie des ecoulements stationaries des fluides parfaits.C. R. Acad. Sci. Paris. 261, 17–20.
Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I. [1988].Dynamical Systems III. Encyclopedia of Mathematical Sciences, R. V. Gamkrelidze, ed. Springer-Verlag: New York.
Beigie, D., Leonard, A., and Wiggins, S. [1991a]. Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems.Nonlinearity 4, 775–819.
Beigie, D., Leonard, A., and Wiggins, S. [1991b]. The dynamics associated with the chaotic tangles of two-dimensional quasiperiodic vector fields: theory and applications. InNonlinear Phenomena in Atmospheric and Oceanic Sciences, G. Carnevale and R. Pierrehumbert, eds. Springer-Verlag: New York.
Bluman, G. W., and Kumei, S. [1989].Symmetries and Differential Equations. Springer-Verlag: New York.
Cary, J. R., and Littlejohn, R. G. [1982]. Hamiltonian mechanics and its application to magnetic field line flow.Ann. Phys. 151, 1–34.
Camassa, R., and Wiggins, S. [1991]. Chaotic advection in a Rayleigh-Benard flow.Phys. Rev. A 43(2), 774–797.
Cheng, C.-Q., and Sun, Y.-S. [1990]. Existence of invariant tori in three-dimensional measure-preserving mappings.Celestial Mech. 47, 275–292.
Delshams, A., and de la Llave, R. [1990]. Existence of quasi-periodic orbits and absence of transport for volume-preserving transformations and flows. Preprint.
Feingold, M., Kadanoff, L. P., and Piro, O. [1988]. Passive scalars, three-dimensional volume-preserving maps and chaos.J. Statist. Phys. 50, 529–565.
Franjione, J. G., and Ottino, J. M. [1991]. Stretching in duct flows.Phys. Fluids A 3(11), 2819–2821.
Gradshteyn, I. S., and Ryzhik, I. M. [1980].Table of Integrals, Series and Products. Academic Press: New York.
Herman, M. [1991]. Topological stability of the Hamiltonian and volume-preserving dynamical systems. Lecture at the International Conference on Dynamical Systems, Evanston, Illinois.
Janaki, M. S., and Ghosh, G. [1987]. Hamiltonian formulation of magnetic field line equations.J. Phys. A 20, 3679–3685.
Kolmogorov, A. N. [1953]. On dynamical systems with integral invariants on the torus.Dokl. Akad. Nauk SSSR 93, 763–766.
Kopell, N. [1985]. Invariant manifolds and the initialization problem for some atmospheric equations.Phys. D 14, 203–215.
Kusch, H. A., and Ottino, J. M. [1991]. Experiments on mixing in continuous chaotic flows.J. Fluid Mech. 236, 319–348.
MacKay, R. S. [1992]. Transport in three dimensional volume-preserving flows. To be published in J. Nonlin. Sci.
Marsden, J., and Weinstein, A. [1972]. Reduction of symplectic manifolds with symmetry.Rep. Math. Phys. 5, 121–130.
Moser, J. [1973]. Stable and Random Motions in Dynamical Systems.Ann. Math. Stud. No. 77.
Olver, P. J. [1986].Applications of Lie Groups to Differential Equations. Springer-Verlag: New York.
Ottino, J. M. [1989].The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press: Cambridge.
Rom-Kedar, V., Leonard, A., and Wiggins, S. [1990]. An analytical study of transport, mixing and chaos in an unsteady vortical flow.J. Fluid Mech. 214, 347–394.
Serrin, J. [1959]. Mathematical Principles of Classical Fluid Mechanics. InEncyclopedia of Physics Vol. VIII, S. Flugge, ed. Springer-Verlag: New York.
Truesdell, C. [1954].The Kinematics of Vorticity. Indiana University Publications Science Series No. 19. Indiana University: Bloomington, Indiana.
Wiggins, S. [1990].Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag: New York.
Wrede, R. C. [1963].Introduction to Vector and Tensor Analysis. Wiley: New York.