On the influence of stress state on ductile fracture of two 6000-series aluminium alloys with different particle content

International Journal of Solids and Structures - Tập 269 - Trang 112149 - 2023
Asle Joachim Tomstad1, Magnus Boåsen2, Jonas Faleskog2, Tore Børvik1,3, Odd Sture Hopperstad1,3
1Structural Impact Laboratory (SIMLab), Department of Structural Engineering, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
2Solid Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
3Centre for Advanced Structural Analysis (CASA), NTNU, Trondheim, Norway

Tài liệu tham khảo

Abaqus, 2019. Version 2019. Dassault Systemès Simulia Corporation. Providence, Rhode Island, USA. Achouri, 2013, Experimental characterization and numerical modeling of micromechanical damage under different stress states, Mater. Des., 50, 207, 10.1016/j.matdes.2013.02.075 Agarwal, 2003, Void growth in 6061-aluminum alloy under triaxial stress state, Mater. Sci. Eng. A, 341, 35, 10.1016/S0921-5093(02)00073-4 Bao, 2004, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46, 81, 10.1016/j.ijmecsci.2004.02.006 Barsoum, 2007, Rupture mechanisms in combined tension and shear – Experiments, Int. J. Solids Struct., 44, 1768, 10.1016/j.ijsolstr.2006.09.031 Benzerga, 2010, Ductile fracture by void growth to coalescence, Adv. Appl. Mech., 44, 169, 10.1016/S0065-2156(10)44003-X Beremin, 1981, Cavity formation from inclusions in ductile fracture of A508 steel, Metall. Trans. A, 12, 723, 10.1007/BF02648336 Costas, 2021, On the effect of pilot holes on the mechanical behaviour of flow-drill screw joints. Experimental tests and mesoscale numerical simulations, J. Mater. Process. Technol., 294, 10.1016/j.jmatprotec.2021.117133 Cox, 1974, An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels, Metall. Trans., 5, 1457, 10.1007/BF02646633 Dæhli, 2017, Influence of yield surface curvature on the macroscopic yielding and ductile failure of isotropic porous plastic materials, J. Mech. Phys. Solids, 107, 253, 10.1016/j.jmps.2017.07.009 Dæhli, 2019, Effective behaviour of porous ductile solids with a non-quadratic isotropic matrix yield surface, J. Mech. Phys. Solids, 130, 56, 10.1016/j.jmps.2019.05.014 Faleskog, 2013, Tension–torsion fracture experiments—Part I: Experiments and a procedure to evaluate the equivalent plastic strain, Int. J. Solids Struct., 50, 4241, 10.1016/j.ijsolstr.2013.08.029 Green, 2007 Guo, 2008, Continuum modeling of a porous solid with pressure-sensitive dilatant matrix, J. Mech. Phys. Solids, 56, 2188, 10.1016/j.jmps.2008.01.006 Gurson, 1977, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, ASME J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Haltom, 2013, Ductile failure under combined shear and tension, Int. J. Solids Struct., 50, 1507, 10.1016/j.ijsolstr.2012.12.009 Hannard, 2017, Ductilization of aluminium alloy 6056 by friction stir processing, Acta Mater., 130, 121, 10.1016/j.actamat.2017.01.047 Hannard, 2018, Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropy, Acta Mater., 148, 456, 10.1016/j.actamat.2018.02.003 Hershey, 1954, The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals, J. Appl. Mech.-Trans. ASME, 21, 241, 10.1115/1.4010900 Hosford, 1972, A generalized isotropic yield criterion, J. Appl. Mech., 39, 607, 10.1115/1.3422732 Hosford, 1996, On the crystallographic basis of yield criteria, Textures Microstruct., 26–27, 479, 10.1155/TSM.26-27.479 Khalifa, 2003, Iron Intermetallic phases in the Al corner of the Al-Si-Fe system, Metall. Mater. Trans. A, 34, 807, 10.1007/s11661-003-1009-9 Kroon, M., Faleskog, J., 2023. A plasticity model for porous solids based on the second and third stress invariants. To be submitted for publication. Kroon, 2013, Numerical implementation of a J2 -and J3-dependent plasticity model based on a spectral decomposition of the stress deviator, Comput. Mech., 52, 1059, 10.1007/s00466-013-0863-6 Nahshon, 2008, Modification of the Gurson Model for shear failure, Eur. J. Mech. A Solids, 27, 1, 10.1016/j.euromechsol.2007.08.002 Papasidero, 2014, Determination of the Effect of Stress State on the Onset of Ductile Fracture Through Tension-Torsion Experiments, Exp. Mech., 54, 137, 10.1007/s11340-013-9788-4 Papasidero, 2015, Ductile fracture of aluminum 2024–T351 under proportional and non-proportional multi-axial loading: Bao-Wierzbicki results revisited, Int. J. Solids Struct., 69–70, 459, 10.1016/j.ijsolstr.2015.05.006 Pedersen, 2015, Influence of microstructure on work-hardening and ductile fracture of aluminium alloys, Mater. Des., 70, 31, 10.1016/j.matdes.2014.12.035 Perrin, 1993, Rudnicki and rice’s analysis of strain localization revisited, J. Appl. Mech., 60, 842, 10.1115/1.2900992 Pineau, 2016, Failure of metals I: Brittle and ductile fracture, Acta Mater., 107, 424, 10.1016/j.actamat.2015.12.034 Qvale, 2022, The effect of constituent particles on the tear resistance of three 6000-series aluminium alloys, Int. J. Fract., 238, 165, 10.1007/s10704-022-00658-8 Rudnicki, 1975, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371, 10.1016/0022-5096(75)90001-0 Scales, 2016, Ductile failure of aluminum alloy tubes under combined torsion and tension, Int. J. Solids Struct., 97–98, 116, 10.1016/j.ijsolstr.2016.07.038 Scales, 2019, Material response, localization, and failure of an aluminum alloy under combined shear and tension: Part I experiments, Int. J. Plast., 120, 340, 10.1016/j.ijplas.2019.04.004 Tancogne-Dejean, 2021, Ductile damage of AA2024-T3 under shear loading: Mechanism analysis through in-situ laminography, Acta Mater., 205, 10.1016/j.actamat.2020.116556 Thomesen, 2020, Influence of stress state on plastic flow and ductile fracture of three 6000-series aluminium alloys, Mater. Sci. Eng. A, 783, 10.1016/j.msea.2020.139295 Tomstad, 2021, Effects of constituent particle content on ductile fracture in isotropic and anisotropic 6000-series aluminium alloys, Mater. Sci. Eng. A, 820, 10.1016/j.msea.2021.141420 Tvergaard, 1981, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 389, 10.1007/BF00036191 Tvergaard, 1982, On localization in ductile materials containing spherical voids, Int. J. Fract., 18, 237, 10.1007/BF00015686 Westermann, 2014, Effects of particles and solutes on the strength, work-hardening and ductile fracture of aluminium alloys, Mech. Mater., 79, 58, 10.1016/j.mechmat.2014.08.006 Xue, 2013, Tension–torsion fracture experiments–Part II: Simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain, Int. J. Solids Struct., 50, 4258, 10.1016/j.ijsolstr.2013.08.028