On the importance of thinking locally for statistics and society

Spatial Statistics - Tập 50 - Trang 100601 - 2022
A. Stewart Fotheringham1, Mehak Sachdeva1
1School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287, USA

Tài liệu tham khảo

Agnew, 1996, Mapping politics: how context counts in Electoral Geography, Political Geogr., 15, 129, 10.1016/0962-6298(95)00076-3 Alin, 2010, Simpson’s paradox, WIREs Comput. Stat., 2, 247, 10.1002/wics.72 Amrhein, 1995, Searching for the elusive aggregation effect: Evidence from statistical simulations, Environ. Plan. A: Economy Space, 27, 105, 10.1068/a270105 Anselin, 1988 Arbia, 1989 Banerjee, 2014 Beck, 2002, The social calculus of voting: Interpersonal, media, and organizational influences on presidential choices, Amer. Political Sci. Rev., 96, 57, 10.1017/S0003055402004239 Bishop, 2009 Blyth, 1972, On Simpson’s Paradox and the Sure-Thing Principle, J. Amer. Statist. Assoc., 67, 364, 10.1080/01621459.1972.10482387 Borchert, 1972, America’s Changing Metropolitan Regions, Ann. Amer. Assoc. Geogr., 62, 352, 10.1111/j.1467-8306.1972.tb00868.x Braha, 2017, Voting contagion: Modeling and analysis of a century of US presidential elections, PLoS One, 10.1371/journal.pone.0177970 Brunsdon, 1998, Geographically weighted regression, J. R. Stat. Soc. D, 47, 431 Brunsdon, 2002, Geographically weighted summary statistics – A framework for localised exploratory data analysis, Comput. Environ. Urban Syst., 26, 501, 10.1016/S0198-9715(01)00009-6 Brunsdon, 2007, Geographically weighted discriminant analysis, Geogr. Anal., 39, 376, 10.1111/j.1538-4632.2007.00709.x Burnham, 1998 Cressie, N., 1996. Change of support and the modifiable areal unit problem. Faculty of Informatics - Papers (Archive), pp. 159–180. Dark, 2007, The modifiable areal unit problem (MAUP) in physical geography, Prog. Phys. Geogr.: Earth Environ., 31, 471, 10.1177/0309133307083294 Duncan, 1996, Health-related behaviour in context: A multilevel modelling approach, Soc. Sci. Med., 42, 817, 10.1016/0277-9536(95)00181-6 Duncan, 1998, Context composition and heterogeneity: Using multilevel models in health research, Soc. Sci. Med., 46, 97, 10.1016/S0277-9536(97)00148-2 Enos, 2017 Finley, 2011, Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence, Methods Ecol. Evol., 2, 143, 10.1111/j.2041-210X.2010.00060.x Fotheringham, 1998, Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis, Environ. Plan. A, 30, 1905, 10.1068/a301905 Fotheringham, 2002 Fotheringham, 2015, Exploring, modelling and predicting spatiotemporal variations in house prices, Ann. Reg. Sci., 54, 417, 10.1007/s00168-015-0660-6 Fotheringham, 2021, Scale, context and heterogeneity: A spatial analytical perspective on the 2016 US presidential election, Ann. Am. Assoc. Geogr., 111, 1602 Fotheringham, 2021, Modeling spatial processes in quantitative human geography, Ann. GIS Fotheringham, 1991, The modifiable areal unit problem in multivariate statistical analysis, Environ. Plan. A, 23, 1025, 10.1068/a231025 Fotheringham, 2017, Multiscale geographically weighted regression (MGWR), Ann. Assoc. Amer. Geogr., 107, 1247 Gao, 2011, Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using geographically weighted regression, Appl. Geogr., 31, 292, 10.1016/j.apgeog.2010.06.003 Geddes, 2021, Participation in colorectal cancer screening: Exploring relationship heterogeneity and scale differences using multiscale geographically weighted regression, Geosp. Health, 16, 967 Gehlke, 1934, Certain effects of grouping upon the size of the correlation coefficient in census tract material, J. Amer. Stat. Assoc., 29, 169, 10.1080/01621459.1934.10506247 Gelfand, 2003, Spatial modeling with spatially varying coefficient processes, Journal of the American Statistical Association, 98, 387, 10.1198/016214503000170 Griffith, 2000, A linear regression solution to the spatial autocorrelation problem, J. Geogr. Syst., 2, 141, 10.1007/PL00011451 Griffith, 2008, Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR), Environ. Plan. A: Economy Space, 40, 2751, 10.1068/a38218 Harris, 2019, A simulation study on specifying a regression model for spatial data: Choosing between autocorrelation and heterogeneity effects, Geogr. Anal., 51, 151, 10.1111/gean.12163 Harris, 2011, Geographically weighted principal components analysis, Int. J. Geogr. Inf. Sci., 25, 1717, 10.1080/13658816.2011.554838 Harris, 2013, Using contextualized geographically weighted regression to model the spatial heterogeneity of land prices in Beijing China, Trans. GIS, 17, 901, 10.1111/tgis.12020 Harris, 2010, The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets, Math. Geosci., 42, 657, 10.1007/s11004-010-9284-7 Huang, 2010, Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices, Int. J. Geogr. Inf. Sci., 24, 383, 10.1080/13658810802672469 Inman, 2019, Local niche differences predict genotype associations in sister taxa of desert tortoise, Divers. Distrib., 25, 1194, 10.1111/ddi.12927 Kordi, 2016, Spatially weighted interaction models – SWIM, Ann. Am. Assoc. Geogr., 106, 990 LeSage, 2004, A family of geographically weighted regression models, 241, 10.1016/S0731-9053(2004)18 Li, 2020, Computational improvements to multiscale geographically weighted regression, Int. J. Geogr. Inform. Sci., 34, 1378, 10.1080/13658816.2020.1720692 Li, 2019, Fast geographically weighted regression (FastGWR): A scalable algorithm to investigate spatial process heterogeneity in millions of observations, Int. J. Geogr. Inform. Sci., 33, 155, 10.1080/13658816.2018.1521523 Li, 2020, Measuring bandwidth uncertainty in multiscale geographically weighted regression using akaike weights, Ann. Am. Assoc. Geogr., 110, 1500 Lloyd, 2011 Matheron, 1963, Principles of geostatistics, Econ. Geol., 58, 1246, 10.2113/gsecongeo.58.8.1246 Matheron, 1969 Miller, 2012, Species distribution models: Spatial autocorrelation and non-stationarity, Prog. Phys. Geogr.: Earth Environment, 36, 681, 10.1177/0309133312442522 Mohammadinia, 2019, Prediction mapping of human leptospirosis using ANN, GWR, SVM and GLM approaches, BMC Infect. Dis., 19, 971, 10.1186/s12879-019-4580-4 Murakami, 2019, The importance of scale in spatially varying coefficient modeling, Ann. Am. Assoc. Geogr., 109, 50 O’Loughlin, 2018, Thirty-five years of political geography: the good, the bad and the ugly, Political Geogr., 65, 143, 10.1016/j.polgeo.2018.05.004 Openshaw, 1983 Oreg, 2006, Predicting proenvironmental behavior cross-nationally: Values, the theory of planned behavior, and value-belief-norm theory, Environ. Behav., 38, 462, 10.1177/0013916505286012 Osborne, 2007, Non-stationarity and local approaches to modelling the distributions of wildlife, Divers. Distrib., 13, 313, 10.1111/j.1472-4642.2007.00344.x Oshan, 2018, A comparison of spatially varying regression coefficient estimates using geographically weighted and spatial filter-based techniques, Geogr. Anal., 50, 53, 10.1111/gean.12133 Plaut, 2002, Place matters: Consensual features and regional variation in American well-being and self, J. Pers. Soc. Psychol., 83, 160, 10.1037/0022-3514.83.1.160 Sá, 2011, The Pyrogeography of Sub-Saharan Africa: A study of the spatial non-stationarity of fire–environment relationships using GWR, J. Geogr. Syst., 13, 227, 10.1007/s10109-010-0123-7 Sachdeva, 2021 Sachdeva, 2022, Local modeling in a regression framework Sakoda, 1971, The checkerboard model of social interaction, J. Math. Sociol., 1, 119, 10.1080/0022250X.1971.9989791 Schelling, 1971, Dynamic models of segregation, J. Math. Sociol., 1, 143, 10.1080/0022250X.1971.9989794 Simpson, 1951, The interpretation of interaction in contingency tables, J. R. Stat. Soc. Ser. B Stat. Methodol., 13, 238 Sirmans, 2006, The value of housing characteristics: A meta analysis, J. Real Estate Financ. Econ., 33, 215, 10.1007/s11146-006-9983-5 Tobler, 1970, A computer movie simulating urban growth in the detroit region, Econ. Geogr., 46 Walker, 2006, Latent lifestyle preferences and household location decisions, J. Geogr. Syst., 9, 77, 10.1007/s10109-006-0030-0 Waller, 2007, Quantifying geographic variations in associations between alcohol distribution and violence: A comparison of geographically weighted regression and spatially varying coefficient models, Stoch. Environ. Res. Risk Assess., 21, 573, 10.1007/s00477-007-0139-9 Wheeler, 2007, An assessment of coefficient accuracy in linear regression models with spatially varying coefficients, J. Geogr. Syst., 9, 145, 10.1007/s10109-006-0040-y Wheeler, 2009, Comparing spatially varying coefficient models: A case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests, J. Geogr. Syst., 11, 1, 10.1007/s10109-008-0073-5 Windle, 2010, Exploring spatial non-stationarity of Fisheries survey data using geographically weighted regression (GWR): An example from the Northwest Atlantic, ICES J. Mar. Sci., 67, 145, 10.1093/icesjms/fsp224 Wolf, 2018, Single and multiscale models of process spatial heterogeneity, Geogr. Anal., 50, 223, 10.1111/gean.12147 Yang, 2019, Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging: A case study in the Heihe River Basin, northwest China, Ecol. Indic., 102, 252, 10.1016/j.ecolind.2019.02.038 Yu, 2020, On the measurement of bias in geographically weighted regression models, Spatial Stat., 38, 10.1016/j.spasta.2020.100453 Zelinsky, 1992 Zhang, 2005, Spatial residual analysis of six modeling techniques, Ecol. Model., 186, 154, 10.1016/j.ecolmodel.2005.01.007 Zhang, 2009, An evaluation of spatial autocorrelation and heterogeneity in the residuals of six regression models, Forest Sci., 55, 533