On the high-temperature oxidation of ZnSb for thermoelectric applications

Corrosion Science - Tập 210 - Trang 110826 - 2023
Reshma K. Madathil1, Vincent Thoréton1, Øystein Prytz2, Truls Norby1
1Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, Gaustadalléen 21, NO-0349, Oslo, Norway
2Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway

Tài liệu tham khảo

Nolas, 2001, 1 Mahan, 2016, Introduction to thermoelectrics, APL Mater., 4, 10.1063/1.4954055 Song, 2016, Review of research on the thermoelectric material ZnSb, 117 Song, 2017, Zn vacancy formation, Zn evaporation and decomposition of ZnSb at elevated temperatures: influence on the microstructure and the electrical properties, J. Alloy. Compd., 710, 762, 10.1016/j.jallcom.2017.03.339 Berland, 2016, Enhancement of thermoelectric properties by energy filtering: theoretical potential and experimental reality in nanostructured ZnSb, J. Appl. Phys., 119, 10.1063/1.4944716 Pothin, 2016, Preparation and properties of ZnSb thermoelectric material through mechanical-alloying and spark plasma sintering, Chem. Eng. J., 299, 126, 10.1016/j.cej.2016.04.063 Xiong, 2013, Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb, Scr. Mater., 69, 397, 10.1016/j.scriptamat.2013.05.029 F. de la Peña, e.a., hyperspy/hyperspy: HyperSpy v1.5.2. 2019, Zenodo. Soares Sabioni, 2004, About the oxygen diffusion mechanism in ZnO, Solid State Ion., 170, 145, 10.1016/j.ssi.2003.08.045 Sabioni, 2003, Oxygen diffusion in pure and doped ZnO, Mater. Res., 6, 173, 10.1590/S1516-14392003000200011 Erhart, 2006, Diffusion of zinc vacancies and interstitials in zinc oxide, Appl. Phys. Lett., 88, 10.1063/1.2206559 Parmar, 2018, Zn vacancy formation energy and diffusion coefficient of CVT ZnO crystals in the sub-surface micron region, Sci. Rep., 8, 13446, 10.1038/s41598-018-31771-1 Yurkiv, 2020, The mechanism of Zn diffusion through ZnO in secondary battery: a combined theoretical and experimental study, J. Phys. Chem. C, 124, 15730, 10.1021/acs.jpcc.0c03514 Moore, 1951, Kinetics of the formation of oxide films on zinc foil, Trans. Faraday Soc., 47, 501, 10.1039/tf9514700501 Delalu, 2000, Kinetics and modeling of diffusion phenomena occurring during the complete oxidation of zinc powder: influence of granulometry, temperature and relative humidity of the oxidizing fluid, Solid State Sci., 2, 229, 10.1016/S1293-2558(00)00130-8 Tuck, 1981, A fundamental study of the kinetics of zinc oxidation in the temperature range 320–415°C in atmospheres of pure oxygen and oxygen doped with gaseous impurities, Corros. Sci., 21, 333, 10.1016/0010-938X(81)90071-8 Jedlinski, 1991, On the oxidation mechanism of alumina formers, Oxid. Met., 36, 317, 10.1007/BF00662968 Pint, 1993, 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3, Oxid. Met., 39, 167, 10.1007/BF00665610