On the hierarchical structure of Pareto critical sets

Journal of Global Optimization - Tập 73 - Trang 891-913 - 2019
Bennet Gebken1, Sebastian Peitz1, Michael Dellnitz1
1Chair of Applied Mathematics, Paderborn University, Paderborn, Germany

Tóm tắt

In this article we show that the boundary of the Pareto critical set of an unconstrained multiobjective optimization problem (MOP) consists of Pareto critical points of subproblems where only a subset of the set of objective functions is taken into account. If the Pareto critical set is completely described by its boundary (e.g., if we have more objective functions than dimensions in decision space), then this can be used to efficiently solve the MOP by solving a number of MOPs with fewer objective functions. If this is not the case, the results can still give insight into the structure of the Pareto critical set.

Tài liệu tham khảo

Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: theory and applications. Evolut. Comput. 17(2), 135–166 (2009) De Melo, W.: On the structure of the Pareto set of generic mappings. Bull. Braz. Math. Soc. 7(2), 121–126 (1976) Degiovanni, M., Lucchetti, R., Ribarska, N.: Critical point theory for vector valued functions. J. Convex Anal. 9, 415–428 (2002) Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113–136 (2005) di Pierro, F., Khu, S.T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007) Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005) Enrico, M., Elena, M., Matteo, R.: A Morse-type index for critical points of vector functions. Economics and quantitative methods, Department of Economics, University of Insubria (2007). URL https://EconPapers.repec.org/RePEc:ins:quaeco:qf0702. Accessed 9 Jan 2019 Giorgi, G., Guerraggio, A.: On the notion of tangent cone in mathematical programming. Optimization 25(1), 11–23 (1992) Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Springer, Birkhäuser, Basel (2001) Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2419–2426 (2008) Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951) Lange, K.: Optimization, 2nd edn. Springer, New York (2013) Lee, J.: Introduction to Smooth Manifolds. Springer, New York (2012) López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 673–680. ACM (2008) Lovison, A.: Singular continuation: generating piecewise linear approximations to pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011) Lovison, A., Pecci, F.: Hierarchical Stratification of Pareto Sets. arXiv:1407.1755 (2014) Lowe, T.J., Thisse, J.F., Ward, J.E., Wendell, R.E.: On efficient solutions to multiple objective mathematical programs. Manag. Sci. 30, 1346–1349 (1984) Malivert, C., Boissard, N.: Structure of efficient sets for strictly quasi convex objectives. J. Convex Anal. 1(2), 143–150 (1994) Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1998) Miglierina, E., Molho, E., Rocca, M.: Critical points index for vector functions and vector optimization. J. Optim. Theory Appl. 138(3), 479–496 (2008) Mueller-Gritschneder, D., Graeb, H., Schlichtmann, U.: A successive approach to compute the bounded pareto front of practical multiobjective optimization problems. SIAM J. Optim. 20(2), 915–934 (2009) Peitz, S.: Exploiting structure in multiobjective optimization and optimal control. In: Ph.D. Thesis, Paderborn University, Paderborn(2017) Popovici, N.: Pareto reducible multicriteria optimization problems. Optimization 54(3), 253–263 (2005) Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013) Schütze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evolut. Comput. 15(4), 444–455 (2011) Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E., Kavanagh, K., Alon, U.: Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336(6085), 1157–1160 (2012) Singh, H.K., Isaacs, A., Ray, T.: A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evolut. Comput. 15(4), 539–556 (2011) Smale, S.: Global analysis and economics I: Pareto optimum and a generalization of Morse theory. In: Dynamical Systems, pp. 531–544. Academic Press, Cambridge (1973) Smale, S.: Optimizing several functions. In: Proceedings of International Conference on Manifolds and Related Topics in Topology, pp. 69–75. University of Tokyo, Tokyo (1975) Sun, J.Q., Xiong, F.R., Schütze, O., Hernández, C.: Cell Mapping Methods. Springer, New York (2018) Wan, Y.: Morse theory for two functions. Topology 14(3), 217–228 (1975) Witting, K.: Numerical algorithms for the treatment of parametric multiobjective optimization problems and applications. In: Ph.D. Thesis, Paderborn University, Paderborn (2012)