On the global balanced-projective dimension of valuation domains

Springer Science and Business Media LLC - Tập 46 - Trang 33-40 - 2003
L. Fuchs1, K. M. Rangaswamy2
1Department of Mathematics, Tulane University, New Orleans, USA
2Department of Mathematics, University of Colorado, Colorado Springs, USA

Tóm tắt

Assuming the General Continuum Hypothesis, the global balanced-projective dimension of a valuation domain is determined. We show that it is always equal to the supremum of the projective dimensions of torsion-free modules.

Tài liệu tham khảo

D. Arnold and C. Vinsonhaler, Pure subgroups of finite rank completely decomposable groups II, Lecture Notes in Math., vol. 1006 Springer, 1983, 97–143. R. Dimitriæ, Balanced projective dimension of modules, Acta Math.Inform.Univ.Ostraviensis 5 (1997), 39–51. P. Eklof, Homological dimension and stationary sets, Math.Zeitschrift 180 (1982), 1–9. L. Fuchs and E. Monari-martinez, Butler modules over valuation domains, Canad.J.Math. 129 (1990), 115–126. L. Fuchs and L. Salce, Modules over Valuation Domains, Lecture Notes in Pure Appl. Math., vol. 97, Marcel Dekker, 1985. L. Fuchs, L. Salce and P. Zanardo, Note on the transitivity of pure essential extensions, Coll.Math. 78 (1998), 283–291. T. Jech, Set Theory, Academic Press, New York, 1978. E. Monari-martinez, Some properties of Butler modules over valuation domains, Rendiconti Sem.Mat.Univ.Padova 85 (1991), 185–199. E. Monari-martinez and K. M. Rangaswamy, Torsion-free modules over valuation domains whose balanced-projective dimension is at most one, J.Algebra 205 (1998), 91–104. L. Nongxa, K. M. Rangaswamyand C. Vinsonhaler, Torsion-free modules of finite balanced-projective dimension over valuation domains, J.Pure Appl.Algebra 156 (2001), 247–265. B. Osofsky, Global dimension of valuation rings, Trans.Amer.Math.Soc. 127 (1967), 136–149.