On the geometry of spin 1/2
Tóm tắt
All the necessary elements for the description of the spin degree of freedom of a non relativistic spin 1/2 particle (e.g. the electron) are contained in the geometry of the complex Hopf bundleh:S
1→S
3→S
2. This bundle has also the necessary information for the geometrical construction of the symmetry group of the standard model,U(1)×SU(2)×SU(3). The passage from the Schroedinger-Pauli equation to the relativistic Dirac equation is equivalent, geometrically, to the passage from the Clifford algebra of ordinary Euclidean space,
, to the Clifford algebra of Minkowski space-time,Cl(M
4) withCl(M
4) ≅ ℍ(2) for the Lorentz metric (+,−,−,−) andCl(M
4) ≅ ℝ(4) for the Lorentz metric (−,+,+,+), where ℝ, ℂ and ℍ are the real, complex and quaternionic numbers, respectively. The physical equivalence of the two metrics leads to the complexification of the corresponding Clifford algebras, giving the physical Dirac algebraD
16 ≅ ℂ(4).
Tài liệu tham khảo
Aguilar M. A. and M. Socolovsky, Topology of the Symmetry Group of the Standard Model,Int. Journal of Theoretical Physics 38, 2485–2509 (1999).
Ashtekar A. and T. A. Schilling, Geometry of Quantum Mechanics,AIP Conference Proceedings 342, 471–478 (1994).
Ashtekar A. and T. A. Schilling, Geometrical Formulation of Quantum mechanics, gr-qc/9706069, (1997).
Berestetskii V. B., E. M. Lifshitz and Pitaevskii,Quantum Electrodynamics, Vol. 4 of Course of Theoretical Physics, 2nd ed., Butterworth-Heinemann, Oxford. (1987).
Choquet-Bruhat Y., C. De Witt-Morette and M. Dillard-Bleick,Analysis, Manifolds and Physics, Part I: Basics, North Holland, Amsterdam. (1982).
Dirac P. A. M.,Proc. of the Royal Society of London A 117, 610 (1928a).
Dirac P. A. M.,Proc. of the Royal Society of London A 118, 351 (1928b).
Dirac P. A. M.,The Principles of Quantum Mechanics, 4th ed., Clarendon Press, Oxford. (1958).
Hopf H., Uber die Abbildungen der dreidimensionalen Sphare auf die Kugelflache,Math. Ann. 104, 637–665 (1931).
Lawson H. B. and M.-L. Michelsohn,Spin Geometry, Princeton University Press, Princeton, New Jersey. (1989).
Penrose R. and W. Rindler,Spinors and Space-Time, Vol. 1, Cambridge University Press, Cambridge. (1984).
Ryder L. H.,Quantum Field Theory, Cambridge University Press, Cambridge. (1996).
Sakurai J. J.,Modern Quantum Mechanics, The Benjamin, Menlo Park, California. (1985).
Shankar R.,Principles of Quantum Mechanics, 2nd ed., Plenum Press, New York. (1994).
Steenrod N.,The Topology of Fibre Bundles, Princeton University Press, Princeton, New Jersey. (1951).