On the generalized Ramanujan-Nagell equation $$\pmb {x^2+(3m^2+1)=(4m^2+1)^n}$$

Indian Journal of Pure and Applied Mathematics - Tập 53 - Trang 222-227 - 2022
Ruiqin Fu1, Hai Yang2
1School of Science, Xi’an Shiyou University, Xi’an, People’s Republic of China
2School of Science, Xi’an Polytechnic University, Xi’an, People’s Republic of China

Tóm tắt

Let m be a positive integer. Using certain properties of Pell equations with elementary number theoretic methods, we prove that the equation $$x^2+(3m^2+1)=(4m^2+1)^n$$ has only two positive integer solutions $$(x,\ n)=(m,\ 1)$$ and $$(8m^3+3m,\ 3)$$ .

Tài liệu tham khảo

R. Apéry, Sur une équation diophantienne, C.R. Acad. Sci. Paris, Ser. A. 251(1960), 1451-1452. Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math. 539 (2001), 55-74. L. K. Hua, Introduction to number theory, Berlin: Springer Verlag, 1982. M. H. Le, Applications of the Gel’fond-baker method to diophantine equations, Beijing: Science Press, 1998. (in Chinese) M. H. Le and G. Soydan. A brief survey on the generalized Lebesque-Ramanujan-Nagell equation, Surv. Math. Appl., 12(2020), 473-523. L. J. Mordell, Diophantine equations, London: Academic Press, 1969. T. Nagell, Introduction to number theory. New York: Wiley, 1951. G. Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Z. 1(2)(1918), 143-148. A. Schinzel, On two theorems of Gel’fond and some of their applications, Acta Arith. 13(2)(1967), 177-236; Addendum: ibid., 56(2) (1990), 181. T. J. Xu and M. H. Le, On the diophantine equation \(D_1x^2+D_2=k^n\), Publ. Math. Debrecen, 47(1-2)(1995), 293-297.