On the fully commutative elements of Coxeter groups
Tóm tắt
Từ khóa
Tài liệu tham khảo
S.Billey and M.Haiman, “Schubert polynomials for the classical groups”, J. Amer. Math. Soc. 8 (1995), 443–482.
S.Billey, W.Jockusch, and R.Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg. Combin. 2 (1993), 345–374.
N.Bourbaki, Groupes et Algebres de Lie, Chaps. IV–VI, Masson, Paris, 1981.
P. Cartier and D. Foata, Problèmes Combinatoires de Commutation et Réarrangements, Lect. Notes in Math. Vol. 85, Springer-Verlag, 1969.
C.K. Fan, A Hecke Algebra Quotient and Properties of Commutative Elements of a Weyl Group, Ph.D. thesis, MIT, 1995.
C.K. Fan, “A Hecke algebra quotient and some combinatorial applications,” J. Alg. Combin., to appear.
S.V. Fomin and A.N. Kirillov, “Combinatorial B a-analogues of Schubert polynomials,” Trans. Amer. Math. Soc., to appear.
T.K. Lam, B and D Analogues of Stable Schubert Polynomials and Related Insertion Algorithms, Ph.D. thesis, MIT. 1995.
R.A.Proctor, “Bruhat lattices, plane partition generating functions, and minuscule representations,” Europ. J. Combin. 5 (1984), 331–350.
J.R. Stembridge. “Some combinatorial aspects of reduced words in finite Coxeter groups,” Trans. Amer. Math. Soc., to appear.
G.X. Viennot, “Heaps of pieces I: Basic definitions and combinatorial lemmas,” in Combinatoire Énumérative, G. Labelle and P. Leroux (Eds.), pp. 321–350, Lect. Notes in Math. Vol. 1234, Springer-Verlag, 1985.