On the fully commutative elements of Coxeter groups

Springer Science and Business Media LLC - Tập 5 Số 4 - Trang 353-385 - 1996
John R. Stembridge1
1Department of Mathematics, University of Michigan, 48109-1109, Ann Arbor, Michigan

Tóm tắt

Từ khóa


Tài liệu tham khảo

S.Billey and M.Haiman, “Schubert polynomials for the classical groups”, J. Amer. Math. Soc. 8 (1995), 443–482.

S.Billey, W.Jockusch, and R.Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg. Combin. 2 (1993), 345–374.

A.Björner, “Orderings of Coxeter groups,” Contemporary Math. 34 (1984), 175–195.

N.Bourbaki, Groupes et Algebres de Lie, Chaps. IV–VI, Masson, Paris, 1981.

P. Cartier and D. Foata, Problèmes Combinatoires de Commutation et Réarrangements, Lect. Notes in Math. Vol. 85, Springer-Verlag, 1969.

C.K. Fan, A Hecke Algebra Quotient and Properties of Commutative Elements of a Weyl Group, Ph.D. thesis, MIT, 1995.

C.K. Fan, “A Hecke algebra quotient and some combinatorial applications,” J. Alg. Combin., to appear.

S.V. Fomin and A.N. Kirillov, “Combinatorial B a-analogues of Schubert polynomials,” Trans. Amer. Math. Soc., to appear.

J.E.Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.

T.K. Lam, B and D Analogues of Stable Schubert Polynomials and Related Insertion Algorithms, Ph.D. thesis, MIT. 1995.

R.A.Proctor, “Bruhat lattices, plane partition generating functions, and minuscule representations,” Europ. J. Combin. 5 (1984), 331–350.

R.P.Stanley, Enumerative Combinatories, Vol. I, Wadsworth & Brooks/Cole, Monterey, 1986.

J.R. Stembridge. “Some combinatorial aspects of reduced words in finite Coxeter groups,” Trans. Amer. Math. Soc., to appear.

G.X. Viennot, “Heaps of pieces I: Basic definitions and combinatorial lemmas,” in Combinatoire Énumérative, G. Labelle and P. Leroux (Eds.), pp. 321–350, Lect. Notes in Math. Vol. 1234, Springer-Verlag, 1985.