On the fermentative behavior of auxotrophic strains of Saccharomyces cerevisiae
Tài liệu tham khảo
Caspeta, 2013, The role of biofuels in the future energy supply, Energy Environ Sci, 6, 1077, 10.1039/c3ee24403b
McKendry, 2002, Energy production from biomass (part 1): Overview of biomass, Bioresour Technol, 83, 37, 10.1016/S0960-8524(01)00118-3
Nielsen, 2013, Metabolic engineering of yeast for production of fuels and chemicals, Curr Opin Biotechnol, 24, 1, 10.1016/j.copbio.2013.03.023
Sherman, 1986
Sherman, 1991, Getting started with yeast, Methods Enzymol, 194, 3, 10.1016/0076-6879(91)94004-V
Çakar, 1999, Metabolic engineering of yeast: The perils of auxotrophic hosts, Biotechnol Lett, 21, 611, 10.1023/A:1005576004215
Hensing, 1995, Physiological and technological aspects of large-scale heterologous-protein production with yeasts, Antonie Van Leeuwenhoek, 67, 261, 10.1007/BF00873690
Pronk, 2002, Auxotrophic yeast strains in fundamental and applied research, Appl Environ Microbiol, 68, 2095, 10.1128/AEM.68.5.2095-2100.2002
Landi, 2011, Effect of auxotrophies on yeast performance in aerated fed-batch reactor, Biochem Biophys Res Commun, 414, 604, 10.1016/j.bbrc.2011.09.129
Enfors, 2001, Baker's yeast
Van Dijken, 2000, An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains, Enzym Microbiol Technol, 26, 706, 10.1016/S0141-0229(00)00162-9
Argueso, 2009, Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production, Genome Res, 19, 2258, 10.1101/gr.091777.109
Brachmann, 1998, Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, 14, 115, 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
Hahn-Hägerdal, 2005, Role of cultivation media in the development of yeast strains for large scale industrial use, Microbiol Cell Fact, 4, 31, 10.1186/1475-2859-4-31
Daran-Lapujade, 2003, Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays, FEMS Yeast Res, 4, 259, 10.1016/S1567-1356(03)00156-9
Entian, 1999, Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach, Mol Gen Genet, 262, 683, 10.1007/PL00013817
Otero, 2010, Whole genome sequencing of Saccharomyces cerevisiae: From genotype to phenotype for improved metabolic engineering applications, BMC Genomics, 11, 723, 10.1186/1471-2164-11-723
Krishnan, 1999, Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33), Appl Biochem Biotechnol, 78, 373, 10.1385/ABAB:78:1-3:373
Saghbini, 2001, Methods in molecular biology
Alfenore, 2002, Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process, Appl Microbiol Biotechnol, 60, 67, 10.1007/s00253-002-1092-7
Valadi, 1998, Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 50, 434, 10.1007/s002530051317
De Alteriis, 1992, Ethanolic fermentation by yeast cells immobilized in polyhaldehyde-hardened gelatin beads, J Ferment Bioeng, 73, 73, 10.1016/0922-338X(92)90237-O
Najafpour, 2004, Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae, Bioresour Technol, 92, 251, 10.1016/j.biortech.2003.09.009
Parascandola, 1992, Behaviour of grape must ferment Saccharomyces cerevisiae immobilized within insolubilized gelatin, J Ferment Bioeng, 74, 123, 10.1016/0922-338X(92)80014-A
Qureshi, 2005, Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates, Microbiol Cell Fact, 4, 24, 10.1186/1475-2859-4-24