On the existence of normal square and nth roots of operators

Mohammed Hichem Mortad1
1Department of Mathematics, University of Oran 1, Ahmed Ben Bella, El Menouar, Oran, Algeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bhatia, R., and P. Rosenthal. 1997. How and why to solve the operator equation $$AX-XB=Y$$. Bulletin of the London Mathematical Society 29 (1): 1–21.

Conway, J.B., and B.B. Morrel. 1987. Roots and logarithms of bounded operators on Hilbert space. Journal of Functional Analysis 70 (1): 171–193.

Embry, M.R. 1970. Similarities involving normal operators on Hilbert space. Pacific Journal of Mathematics 35: 331–336.

Kurepa, S. 1962. On $$n$$-th roots of normal operators. Mathematische Zeitschrift 78: 285–292.

Meise, R., and D. Vogt. 1997. Introduction to functional analysis, Oxford G.T.M., vol. 2. Oxford: Oxford University Press.

Mortad, M.H. 2018. An operator theory problem book. Singapore: World Scientific Publishing Co. https://doi.org/10.1142/10884 . ISBN: 978-981-3236-25-7 (hardcover).

Putnam, C.R. 1957. On square roots of normal operators. Proceedings of the American Mathematical Society 8: 768–769.

Putnam, C.R. 1958. On square roots and logarithms of self-adjoint operators. Proceedings of the Glasgow Mathematical Association 4: 1–2.

Radjavi, H., and P. Rosenthal. 1971. On roots of normal operators. Journal of Mathematical Analysis and Applications 34: 653–664.

Rosenblum, M. 1956. On the operator equation $$BX-XA=Q$$. Duke Mathematical Journal 23: 263–269.

Rudin, W. 1991. Functional analysis. International series in pure and applied mathematics, 2nd ed. New York: McGraw-Hill, Inc.

Stampfli, J.G. 1962. Roots of scalar operators. Proceedings of the American Mathematical Society 13 (5): 796–798.