On the existence of harmonic diffeomorphisms between surfaces

Jürgen Jost1, Richard Schoen2
1Mathematisches Institut der Universitat Bonn, Bonn
2Department of Mathematics, NYU-Courant, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Courant, R.: Dirichlet's principle. New York: Interscience Publishers, Inc., 1950

Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc.10, 1?68 (1978)

Heinz, E.: Über das Nichtverschwinden der Funktionaldeterminante bei einer Klasse eindeutiger Abbildungen. Math. Z.105, 87?89 (1968)

Hildebrandt, S., Jost, J., Widman, K.O.: Harmonic mappings and minimal submanifolds. Invent. Math.62, 269?298 (1980)

Hildebrandt, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math.138, 1?16 (1977)

Jäger, K., Kaul, H.: Uniqueness and stability of harmonic maps and their Jacobi fields. Manuscripta Math.28 (4). 269?291 (1979)

Jost, J.: Univalency of harmonic maps between surfaces. J. Reine Angew. Math.324, 141?153 (1981)

Jost, J., Karcher, H.: Einigea-Priori Abschätzungen für harmonische Abbildungen. (in press 1982)

Lemaire, L.: Applications harmonique de surfaces riemanniennes. J. Differential Geometry13 (1), 51?78 (1978)

Sacks, J., Uhlenbeck, K.: Minimal surfaces in Riemannian manifolds. Ann. Math. Studies (in press 1982)

Sampson, J.: Some properties and applications of harmonic maps. Ann. Sci. École Norm. Sup. (sér 4)11, 211?228 (1978)

Schoen, R., Yau, S.T.: On univalent harmonic maps between surfaces. Invent. Math.44, 265?278 (1978)

Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. Math.110, 127?142 (1979)

Shibata, K.: On the existence of a harmonic mapping. Osaka J. Math.15, 173?211 (1963)