On the excursion theory for linear diffusions

Japanese Journal of Mathematics - Tập 2 - Trang 97-127 - 2007
Paavo Salminen1, Pierre Vallois2, Marc Yor3
1Mathematical Department, Åbo Akademi University, Åbo, Finland
2Département de Mathématique, Université Henri Poincaré, Vandoeuvre les Nancy, France
3Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie, Paris Cedex 05, France

Tóm tắt

We present a number of important identities related to the excursion theory of linear diffusions. In particular, excursions straddling an independent exponential time are studied in detail. Letting the parameter of the exponential time tend to zero it is seen that these results connect to the corresponding results for excursions of stationary diffusions (in stationary state). We characterize also the laws of the diffusion prior and posterior to the last zero before the exponential time. It is proved using Krein’s representations that, e.g. the law of the length of the excursion straddling an exponential time is infinitely divisible. As an illustration of the results we discuss the Ornstein–Uhlenbeck processes.

Tài liệu tham khảo

L. Alili, P. Patie and J. L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process, Stoch. Models, 21 (2005), 967–980. J. Bertoin, T. Fujita, B. Roynette and M. Yor, On a particular class of self-decomposable random variables: The duration of a Bessel excursion straddling an independent exponential time, Probab. Math. Statist., 26 (2006). J.-M. Bismut, Last exit decompositions and regularity at the boundary of transition probabilities, Z. Wahrsch. Verw. Gebiete, 69 (1985), 65–98. R. M. Blumenthal, Excursions of Markov Processes, Birkhäuser, Basel, Berlin, Boston, 1992. L. Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statist., 76, Springer-Verlag, 1992. A. N. Borodin and P. Salminen, Handbook of Brownian Motion – Facts and Formulae, 2nd edition, Birkhäuser, Basel, Berlin, Boston, 2002. K. L. Chung, Excursions in Brownian motion, Ark. Mat., 14 (1976), 155–177. J. L. Doob, The Brownian movement and stochastic equations, Ann. of Math. (2), 43 (1942), 351–369. R. Durrett and D. I. Iglehart, Functionals of Brownian meander and Brownian excursion, Ann. Probab., 5 (1977), 130–135. H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probab. Math. Statist., 31, Academic Press, New York, San Francisco, London, 1976. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953. D. Freedman, Brownian motion and diffusions, Holden-Day, San Fransisco, U. S. A., 1971. R. K. Getoor, Excursions of a Markov process, Ann. Probab., 7 (1979), 244–266. R. K. Getoor and M. J. Sharpe, Last exit decompositions and distributions, Indiana Univ. Math. J., 23 (1973), 377–404. R. K. Getoor and M. J. Sharpe, Last exit times and additive functionals, Ann. Probab., 1 (1973), 550–569. R. K. Getoor and M. J. Sharpe, Excursions of Brownian motion and Bessel processes, Z. Wahrsch. Verw. Gebiete, 47 (1979), 83–106. R. K. Getoor and M. J. Sharpe, Excursions of dual processes, Adv. Math., 45 (1982), 259–309. V. Giorno, A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Some remarks on the Rayleigh process, J. Appl. Probab., 23 (1986), 398–408. A. Göing-Jaeschke and M. Yor, A clarification note about hitting times densities for Ornstein-Uhlenbeck processes, Finance Stoch., 7 (2003), 413–415. J. Hawkes and A. Truman, Statistics of local time and excursions for the Ornstein-Uhlenbeck process, In: Stochastic analysis, Proceedings of the Durham Symposium in Stochastic Analysis, 1990, London Math. Soc. Lecture Note Ser., 167, Cambridge Univ. Press, 1991, pp. 91–101. K. Itô, Poisson point processes attached to Markov processes, In: Proceedings of the Sixth Berkeley Symposium Mathematical Statistics Probability, Vol. III, Univ. California, Berkeley, 1970, pp. 225–239. K. Itô and H. P. McKean, Diffusion processes and their sample paths, Springer-Verlag, 1974. S. Karlin and H. M. Taylor, A second course in stochastic processes, Academic Press, San Diego, 1981. J. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete, 52 (1980), 309–319. J. Kent, The spectral decomposition of a diffusion hitting time, Ann. Probab., 10 (1982), 207–219. F. Knight, Characterization of the Lévy measures of inverse local times of gap diffusion, In: Seminar on Stochastic Processes, 1981, (eds. E. Cinlar, K. L. Chung and R. K. Getoor), Birkhäuser, Boston, 1981, pp. 53–78. S. Kotani and S. Watanabe, Krein’s spectral theory of strings and generalized diffusion processes, In: Functional Analysis and Markov Processes, (ed. M. Fukushima), Lecture Notes in Math., 923, Springer-Verlag, 1981. M. Kozlova and P. Salminen, A note on occupation times of stationary processes, Electron. Comm. Probab., 10 (2005), 94–104. G. K. Kristiansen, A proof of Steutel’s conjecture, Ann. Probab., 22 (1994), 442–452. U. Küchler and P. Salminen, On spectral measures of strings and excursions of quasi diffusions, In: Séminaire de Probabilités, XXIII, (eds. J. Azéma, P. A. Meyer and M. Yor), Lecture Notes in Math., 1372, Springer-Verlag, 1989, pp. 490–502. P. Lévy, Sur certains processus stochastiques homogènes, Compositio Math., 7 (1939), 283–339. V. Linetsky, Computing hitting time densities for CIR and OU diffusions: Applications to mean reverting models, J. Comput. Finance, 7 (2004), 1–22. B. Maisonneuve, Exit systems, Ann. Probab., 3 (1975), 399–411. S. Meleard, Application du calcul stochastique à l’étude de processus de Markov réguliers sur [0,1], Stochastics, 19 (1986), 41–82. P. A. Meyer, Processus de Poisson ponctuels, d’après K. Itô, In: Séminaire de Probabilités, V, (eds. C. Dellacherie and P. A. Meyer), Lecture Notes in Math., 191, Springer-Verlag, 1971. M. Nagasawa, Time reversions of Markov processes, Nagoya Math. J., 24 (1964), 177–204. J. Pitman, Stationary excursions, In: Séminaire de Probabilités, XXI, (eds. J. Azéma, P. A. Meyer and M. Yor), Lecture Notes in Math., 1247, Springer-Verlag, 1986, pp. 289–302. J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete, 59 (1982), 425–457. J. Pitman and M. Yor, Decomposition at the maximum for excursions and bridges of one-dimensional diffusions, In: Itô’s stochastic calculus and probability theory. Tribute dedicated to Kiyoshi Itô on the occasion of his 80th birthday, (eds. N. Ikeda et al.), Tokyo, 1996, pp. 293–310. J. Pitman and M. Yor, On the lengths of excursions of some Markov processes, In: Séminaire de Probabilités, XXXI, (eds. J. Azéma, M. Émery, M. Ledoux and M. Yor), Lecture Notes in Math., 1655, Springer-Verlag, 1997, pp. 272–286. J. Pitman and M. Yor, Laplace transforms related to excursions of a one-dimensional diffusion, Bernoulli, 5 (1999), 249–255. J. Pitman and M. Yor, Itô’s excursion theory and its applications, Japan. J. Math., 2 (2007), 83–96. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition, Springer-Verlag, 2001. L. M. Ricciardi and S. Sato, First passage-time density and moments of the Ornstein-Uhlenbeck process, J. Appl. Probab., 25 (1988), 43–57. L. C. G. Rogers, Williams’ characterization of the Brownian excursion law: Proof and applications, In: Séminaire de Probabilités, XV, (eds. J. Azéma and M. Yor), Lecture Notes in Math., 850, Springer-Verlag, 1981, pp. 227–250. L. C. G. Rogers, A guided tour through excursions, Bull. London Math. Soc., 21 (1989), 305–341. L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2: Itô Calculus, John Wiley & Sons, Chichester, New York, 1987. P. Salminen, On conditional Ornstein-Uhlenbeck processes, Adv. in Appl. Probab., 16 (1984), 920–922. P. Salminen, On last exit decomposition of linear diffusions, Studia Sci. Math. Hungar., 33 (1997), 251–262. S. Sato, Evaluation of the first passage time probability to a square root boundary for the Wiener process, J. Appl. Probab., 14 (1977), 850–856. J. B. Walsh, Excursions and local time, Astérisque, 52-53 (1978), 159–192. D. Williams, Path decompositions and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc. (3), 28 (1974), 738–768. M. Winkel, Electronic foreign-exchange markets and passage events of independent subordinators, J. Appl. Probab., 42 (2005), 138–152.