On the estimation and correction of bias in local atrophy estimations using example atrophy simulations

Computerized Medical Imaging and Graphics - Tập 37 - Trang 538-551 - 2013
Swati Sharma1, François Rousseau2, Fabrice Heitz2, Lucien Rumbach2, Jean-Paul Armspach2
1DeVry University, Chicago Campus, 3300 North Campbell Avenue, Chicago 60618, USA
2ICube, University of Strasbourg, CNRS, UMR 7537, 300 Boulevard Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France

Tài liệu tham khảo

Lanz, 2007, Brain atrophy and cognitive impairment in multiple sclerosis: a review, J Neurol, 254, 43 Chan, 2001, Rates of global and regional cerebral atrophy in AD and frontotemporal dementia, Neurology, 57, 1756, 10.1212/WNL.57.10.1756 Freeborough, 1997, The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI, IEEE Trans Med Imag, 16, 623, 10.1109/42.640753 Smith, 2002, Accurate, robust and automated longitudinal and cross-sectional brain change analysis, NeuroImage, 17, 479, 10.1006/nimg.2002.1040 Pieperhoff, 2008, Detection of structural changes of the human brain in longitudinally acquired MR images by deformation field morphometry: methodological analysis, validation and application, NeuroImage, 43, 269, 10.1016/j.neuroimage.2008.07.031 Sharma, 2010, Evaluation of brain atrophy estimation algorithms using simulated ground-truth data, Med Image Anal, 14, 373, 10.1016/j.media.2010.02.002 Smith, 2007, Longitudinal and cross-sectional analysis of atrophy in Alzheimer's disease: cross validation of BSI, SIENA and SIENAX, NeuroImage, 36, 1200, 10.1016/j.neuroimage.2007.04.035 Karacali, 2006, Simulation of tissue atrophy using a topology preserving transformation model, IEEE Trans Med Imag, 25, 649, 10.1109/TMI.2006.873221 Camara, 2008, Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer's disease images, NeuroImage, 42, 696, 10.1016/j.neuroimage.2008.04.259 Rohlfing, 2006, Transformation model and constraints cause bias in statistics on deformation fields, 207 Lee, 2008, Physically-based validation of deformable medical image registration, 830 Kybic, 2010, Bootstrap resampling for image registration uncertainty estimation without ground truth, IEEE Trans Image Process, 19, 64, 10.1109/TIP.2009.2030955 Hub, 2009, A stochastic approach to estimate the uncertainty involved in B-spline image registration, IEEE Trans Med Imag, 28, 1708, 10.1109/TMI.2009.2021063 Jalobeanu, 2008, Inferring deformation fields from multidate satellite images, Int Geosci Remote Se (Boston MA, USA), 2, 962 Richard, 2007, Metropolis-hasting techniques for finite-element-based registration, 1 Toews, 2009, Bayesian registration via local image regions: information, selection and marginalization, 435 Risholm, 2010, Bayesian estimation of deformation and elastic parameters in non-rigid registration, Lect Notes Comput Sci, 6204, 104, 10.1007/978-3-642-14366-3_10 Risholm, 2010, Summarizing and visualizing registration uncertainty in non-rigid registration, Med Image Comput Comput Assist Interv, 13, 554 Fox, 2011, Algorithms, atrophy and Alzheimer's disease: cautionary tales for clinical trials, NeuroImage, 57, 15, 10.1016/j.neuroimage.2011.01.077 Leow, 2007, Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration, IEEE Trans Med Imag, 26, 822, 10.1109/TMI.2007.892646 Yanovsky, 2009, Comparing registration methods for mapping brain change using tensor-based morphometry, Med Image Anal, 13, 679, 10.1016/j.media.2009.06.002 Yushkevich, 2010, Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3 T MRI data, NeuroImage, 50, 434, 10.1016/j.neuroimage.2009.12.007 Hua, 2011, Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry, NeuroImage, 57, 5, 10.1016/j.neuroimage.2011.01.079 Avants, 2008, Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain, Med Image Anal, 12, 26, 10.1016/j.media.2007.06.004 Wang, 2011, Surface-based TBM boosts power to detect disease effects on the brain: an N=804 ADNI study, NeuroImage, 56, 1993, 10.1016/j.neuroimage.2011.03.040 Noblet, 2005, 3D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization, IEEE Trans Image Process, 14, 553, 10.1109/TIP.2005.846026 Vemuri, 2003, Image registration via level-set motion: applications to atlas-based segmentation, Med Image Anal, 7, 1, 10.1016/S1361-8415(02)00063-4 Gudbjartsson, 1995, The Rician distribution of noisy MRI data, Magnet Reson Med, 34, 910, 10.1002/mrm.1910340618 Aja-Fernandez, 2008, Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach, IEEE Trans Image Process, 17, 1383, 10.1109/TIP.2008.925382 Klein, 2009, Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, 46, 786, 10.1016/j.neuroimage.2008.12.037 Anderson, 2010, Hippocampal atrophy in relapsing-remitting and primary progressive MS: a comparative study, Mult Scler, 16, 1083, 10.1177/1352458510374893 Lewis, 2004, Correction of differential intensity inhomogeneity in longitudinal MR images, NeuroImage, 23, 75, 10.1016/j.neuroimage.2004.04.030 Cocosco, 1997, BrainWeb: online interface to a 3D MRI simulated brain database, NeuroImage, 5, S425