On the electronic contribution to the elastic constants in strained quantum wire superlattices of non-parabolic semiconductors with graded structures: Theory and suggestion for experimental determination
Tóm tắt
We study the electronic contribution to the second- and third-order elastic constants in strained quantum wire superlattices of non-parabolic semiconductors with graded structures and compare the same with the constituent materials, by formulating the appropriate dispersion laws. It is found, taking InSb/GaSb quantum wire superlattice as an example, that the said contributions increase with decreasing thickness and with increasing electron concentration in oscillatory manners together with the fact that the influence of the finite interface width enhances their numerical values. An experimental method is suggested for determining the electronic contribution to the elastic constants in materials having arbitrary dispersion laws. In addition, the well-known results for constituent semiconductors in the absence of stress have also been obtained as special cases of our generalized formulations.
Tài liệu tham khảo
Esaki E., Chang L. L. andHoward W. E., inThe Proceedings of the XI International Conference on the Physics of Semiconductors (Elsevier, Amsterdam) 1972, p. 431.
Chin R., Holonyak N., Stillman G. E., Tang J. Y. andHess K.,Electron. Lett.,16 (1980) 467;Capasso F., Tsang W. T., Hutchinson A. L. and Williams G. F.,Appl. Phys. Lett.,45 (1982) 38;Smith J. S., Chiu L. C., Margalit S., Yariv A. And Cho A. V.,J. Vac. Sci. Technol. B,1 (1983) 376.
Capasso F. andKiehl R.,J. Appl. Phys.,58 (1985) 1366;Heiblum M., Thomas D. C., Knoedler C. M. and Nathan M. I.,Appl. Phys. Lett.,47 (1985) 1105.
Capasso F., inSemiconductors and Semimetals, edited byR. W. Willardson andA. C. Beer (Academic Press, New York) 1985, p. 2.
Capasso F., Mohammed K. andCho A. Y.,Appl. Phys. Lett.,48 (1986) 478.
Ploog K. andDohlar G. H.,Adv. Phys.,32 (1983) 285.
Esaki L., Chang L. L. andMendez E. E.,Jpn. J. Appl. Phys.,20 (1987) L529.
Jaros M., Wong K. B. andGell A. M.,Phys. Rev. B,31 (1985) 1205;BRUM J. A., VOISIN P. and BASTARD G.,Phys. Rev. B,33 (1986) 1063.
Sasaki A.,Phys. Rev. B,30 (1984) 7016.
Wilson B. A.,IEEE Trans. Quantum Electron.,24 (1988) 1763.
Schulman J. N. andMcgill T. C.,Appl. Phys. Lett.,34 (1979) 663.
Sakaki H.,Jpn. J. Appl. Phys.,28 (1989) L314.
Arora V. K., inSemiconductor Materials Characterization Techniques, edited byP. R. Vaya (Narosa Publishing House, New Delhi, India) 1993, p. 243.
Sreedhar A. K. andGupta S. C.,Phys. Rev. B,5 (1972) 3160.
Gathak K. P. andMitra B.,Phys. Scr.,42 (1990) 103 and references cited therein.
Jiang H. X. andLin J. Y.,J. Appl. Phys.,61 (1987) 624.
Ghatak K. P. andDe B.,Proc. Mater. Res. Soc.,226 (1991) 191.
Abramowitz M. andStegun I.,Handbook of Mathematical Functions (Dover Publications, Inc., New York) 1970.
Nag B. R.,Electron Transport in Compound Semiconductors (Springer-Verlag, Berlin, Heidelberg, New York) 1980.
Ghatak K. P. andMondal M.,J. Appl. Phys.,90 (1991) 1666.
Ghatak K. P.,Acta Physica Hung.,74 (1994) 257.
Ghatak K. P.,Phys. Status Solidi B,154 (1989) K29.
Ghatak K. P., Chattopadhyay N. andMondal M.,J. Appl. Phys.,63 (1988) 4536.
Neuberger M. H. D. B.,Electronic Materials, Vol.2 (Plenum Data Corporation, New York) 1971.