On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
Otsuka, 1998
Duerig, 1990
Lagoudas, 2008
Funakubo, 1987
Otsuka, 2005, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci., 50, 511, 10.1016/j.pmatsci.2004.10.001
Wechsler, 1953, On the theory of the formation of martensite, Trans. Am. Inst. Min. Metall. Eng., 197, 1503
Nishida, 2012, Self-accommodation of B19′ martensite in Ti–Ni shape memory alloys – part I. Morphological and crystallographic studies of the variant selection rule, Philos. Mag., 92, 2215, 10.1080/14786435.2012.669858
Cui, 2006, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater., 5, 286, 10.1038/nmat1593
Bhattacharya, 2004
Ball, 1992, Proposed experimental tests of a theory of fine microstructure and the 2-well problem, Philos. Trans. R. Soc. A, 338, 389
Grossmann, 2009, Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators, Metall. Mater. Trans. A, 40, 2530, 10.1007/s11661-009-9958-2
Morgan, 2004, Medical shape memory alloy applications – the market and its products, Mater. Sci. Eng. A, 378, 16, 10.1016/j.msea.2003.10.326
Olbricht, 2008, The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi, Mater. Sci. Eng. A, 481, 142, 10.1016/j.msea.2007.01.182
Young, 2010, Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading, Acta Mater., 58, 2344, 10.1016/j.actamat.2009.12.021
Wang, 1965, Crystal structure and a unique martensitic transition of TiNi, J. Appl. Phys., 36, 3232, 10.1063/1.1702955
Hanlon, 1967, Effect of martensitic transformation on electrical and magnetic properties of NiTi, Trans. Metall. Soc. AIME, 239, 1323
Mosca, 2012, Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni–Ti–Pd, Ni–Ti–Pt and Ni–Ti–Hf shape memory alloys, Phys. B, 407, 3244, 10.1016/j.physb.2011.12.077
Zarinejad, 2008, Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons, Adv. Funct. Mater., 18, 2789, 10.1002/adfm.200701423
Zarinejad, 2010, Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons, 339
Zarinejad, 2008, The crystal chemistry of martensite in NiTiHf shape memory alloys, Intermetallics, 16, 876, 10.1016/j.intermet.2008.04.004
Ren, 2001, A comparative study of elastic constants of Ti–Ni–based alloys prior to martensitic transformation, Mater. Sci. Eng. A, 312, 196, 10.1016/S0921-5093(00)01876-1
Ren, 2000, Why does the martensitic transformation temperature strongly depend on composition?, Mater. Sci. Forum, 327–328, 429, 10.4028/www.scientific.net/MSF.327-328.429
Tang, 1999, New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system, Acta Mater., 47, 3457, 10.1016/S1359-6454(99)00193-7
Ren, 1999, Understanding the martensitic transformations in TiNi-based alloys by elastic constants measurement, Mater. Sci. Eng. A, 273, 190, 10.1016/S0921-5093(99)00368-8
Frenzel, 2010, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater., 58, 3444, 10.1016/j.actamat.2010.02.019
Otsuka, 2002, Factors affecting the MS temperature and its control in shape-memory alloys, Mater. Sci. Forum, 394–395, 177, 10.4028/www.scientific.net/MSF.394-395.177
Honma, 1987, Types and mechanical characteristics of shape memory alloys, 89
Shabalovskaya, 1985, Phase-transitions in the intermetallic compound TiNi with charge-density wave formation, Phys. Status Solidi B, 132, 327, 10.1002/pssb.2221320202
Kittel, 2004
Schweinfest, 2004, Bismuth embrittlement of copper is an atomic size effect, Nature, 432, 1008, 10.1038/nature03198
Duscher, 2004, Bismuth-induced embrittlement of copper grain boundaries, Nat. Mater., 3, 621, 10.1038/nmat1191
Karlsson, 1988, Non-equilibrium grain-boundary segregation of boron in austenitic stainless-steel – 1. Large-scale segregation behavior, Acta Metall. Mater., 36, 1, 10.1016/0001-6160(88)90023-5
Ladna, 1988, Surface and grain-boundary segregation of sulfur and boron in nickel, Acta Metall. Mater., 36, 745, 10.1016/0001-6160(88)90108-3
Reed, 2006
Olbricht, 2013, Characterization of the creep properties of heat resistant 9–12% chromium steels by miniature specimen testing, Mater. Sci. Eng. A, 585, 335, 10.1016/j.msea.2013.07.067
Foroozmehr, 2011, Investigating microstructural evolution during homogenization of the equiatomic NiTi shape memory alloy produced by vacuum arc remelting, Mater. Sci. Eng. A, 528, 7952, 10.1016/j.msea.2011.07.024
Frenzel, 2004, High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles, J. Alloy Compd., 385, 214, 10.1016/j.jallcom.2004.05.002
Pelton, 2000, Optimisation of processing and properties of medical grade nitinol wire, Minim. Invasive Ther., 9, 107, 10.3109/13645700009063057
Hodgson, 2000, Nitinol melting, manufacture and fabrication, Minim. Invasive Ther., 9, 61, 10.3109/13645700009063051
Russel, 2001, Nitinol melting and fabrication, 1
Grossmann, 2008, Processing and property assessment of NiTi and NiTiCu shape memory actuator springs, Materialwiss. Werkstofftech. Technol., 39, 499, 10.1002/mawe.200800271
Khelfaoui, 2003, Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti–Ni alloy, Mater. Sci. Eng. A, 355, 292, 10.1016/S0921-5093(03)00068-6
Waitz, 2004, Martensitic phase transformations in nanocrystalline NiTi studied by TEM, Acta Mater., 52, 137, 10.1016/j.actamat.2003.08.036
Frenzel, 2011, Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures, Adv. Eng. Mater., 13, 256, 10.1002/adem.201000285
Delville, 2011, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plast., 27, 282, 10.1016/j.ijplas.2010.05.005
Ye, 2010, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Mater., 58, 490, 10.1016/j.actamat.2009.09.027
Michutta, 2006, Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates, Acta Mater., 54, 3525, 10.1016/j.actamat.2006.03.036
Dlouhy, 2008, Conventional and in situ transmission electron microscopy investigations into multistage martensitic transformations in Ni-rich NiTi shape memory alloys, Mater. Sci. Eng. A, 481, 409, 10.1016/j.msea.2007.04.123
Karaca, 2013, Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy, Acta Mater., 61, 7422, 10.1016/j.actamat.2013.08.048
Manosa, 1994, Elastic-constants of bcc Cu–Al–Ni alloys, Phys. Rev. B, 49, 9969, 10.1103/PhysRevB.49.9969
Manosa, 1993, Lattice-dynamical study of the premartensitic state of the Cu–Al–Be alloys, Phys. Rev. B, 48, 15708, 10.1103/PhysRevB.48.15708
Planes, 1992, Martensitic-transformation of Cu-based shape-memory alloys – elastic-anisotropy and entropy change, Phys. Rev. B, 45, 7633, 10.1103/PhysRevB.45.7633
Wang, 1967, Equiatomic binary compounds of Zr with transition elements Ru, Rh and Pd, J. Appl. Phys., 38, 822, 10.1063/1.1709419
Egorushkin, 1987, The electronic phase-diagram for the B2-R transition in NiTi, J. Phys. F Met. Phys., 17, 289, 10.1088/0305-4608/17/1/032
Wang, 1966, The mechanical properties as a function of temperature and free electron concentration in stoichiometric TiNi, TiCo and TiFe alloys, 899
Huismankleinherenbrink, 1991, Influence of manganese on the transformation temperatures of Ni50Ti50 shape memory alloys, Mater. Lett., 11, 145, 10.1016/0167-577X(91)90103-D
Chernenko, 1999, Compositional instability of beta-phase in Ni–Mn–Ga alloys, Scripta Mater., 40, 523, 10.1016/S1359-6462(98)00494-1
Sanchez-Alarcos, 2008, Correlation between composition and phase transformation temperatures in Ni–Mn–Ga–Co ferromagnetic shape memory alloys, Acta Mater., 56, 5370, 10.1016/j.actamat.2008.07.017
Krenke, 2007, Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys, J. Magn. Magn. Mater., 310, 2788, 10.1016/j.jmmm.2006.10.1139
Zheng, 2011, Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons, Acta Mater., 59, 5692, 10.1016/j.actamat.2011.05.044
Zhao, 1989, Electronic origin of the intermediate phase of NiTi, Phys. Rev. B, 40, 7999, 10.1103/PhysRevB.40.7999
Hatcher, 2009, Martensitic transformation path of NiTi, Phys. Rev. B, 79, 10.1103/PhysRevB.79.020202
Zhao, 1993, Electron–phonon interactions and the phonon anomaly in beta-phase NiTi, Phys. Rev. B, 48, 2031, 10.1103/PhysRevB.48.2031
Bak, 2002, Hysteresis and anomaly in the elastic properties of the shape memory alloy Ni0.507Ti0.493, Phys. Status Solidi A, 191, 42, 10.1002/1521-396X(200205)191:1<42::AID-PSSA42>3.0.CO;2-J
Fujii, 1989, Electronic-structure and lattice transformation in Ni2MnGa and Co2NbSn, J. Phys. Soc. Jpn., 58, 3657, 10.1143/JPSJ.58.3657
Opahle, 2009, Jahn–Teller-like origin of the tetragonal distortion in disordered Fe–Pd magnetic shape memory alloys, Appl. Phys. Lett., 94, 072508, 10.1063/1.3086878
Souvatzis, 2010, Ab initio study of interacting lattice vibrations and stabilization of the beta phase in Ni–Ti shape-memory alloy, Phys. Rev. B, 81, 092201, 10.1103/PhysRevB.81.092201
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, 1133, 10.1103/PhysRev.140.A1133
Huang, 2003, Crystal structures and shape-memory behaviour of NiTi, Nat. Mater., 2, 307, 10.1038/nmat884
Vishnu, 2010, Phase stability and transformations in NiTi from density functional theory calculations, Acta Mater., 58, 745, 10.1016/j.actamat.2009.09.019
Holec, 2011, Ab initio study of pressure stabilized NiTi allotropes: pressure-induced transformations and hysteresis loops, Phys. Rev. B, 84, 224119, 10.1103/PhysRevB.84.224119
Hatcher, 2009, Role of elastic and shear stabilities in the martensitic transformation path of NiTi, Phys. Rev. B, 80, 144203, 10.1103/PhysRevB.80.144203
Ren, 2000, A unified model for point-defect formation in B2 intermetallic compounds, Philos. Mag. A, 80, 467, 10.1080/01418610008212062
Hagen, 1998, Point defects and chemical potentials in ordered alloys, Philos. Mag. A, 77, 447, 10.1080/01418619808223764
Badura, 1993, Considerations on thermal-equilibrium defect formation in intermetallic compounds within a nearest-neighbor bond model, Z. Metallkd., 84, 405
Holec, 2014, Ab initio study of point defects in NiTi-based alloys, Phys. Rev. B, 89, 014110, 10.1103/PhysRevB.89.014110
Lu, 2007, Point defects and their interaction in TiNi from first-principles calculations, Phys. Rev. B, 75, 094108, 10.1103/PhysRevB.75.094108
Mutter, 2010, Simulation of structural phase transitions in NiTi, Phys. Rev. B, 82, 224201, 10.1103/PhysRevB.82.224201
Ma, 2010, High temperature shape memory alloys, Int. Mater. Rev., 55, 257, 10.1179/095066010X12646898728363
Eckelmeyer, 1976, Effect of alloying on the shape memory phenomenon in nitinol, Scripta Metall. Mater., 10, 667, 10.1016/0036-9748(76)90339-2
Nam, 1990, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Mater. Trans. JIM, 31, 959, 10.2320/matertrans1989.31.959
Prokoshkin, 2004, On the lattice parameters of phases in binary Ti–Ni shape memory alloys, Acta Mater., 52, 4479, 10.1016/j.actamat.2004.06.007
Rahim, 2013, Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater., 61, 3667, 10.1016/j.actamat.2013.02.054
Khalil-Allafi, 2002, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater., 50, 4255, 10.1016/S1359-6454(02)00257-4
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Opahle, 2012, High throughput density functional investigations of the stability, electronic structure and thermoelectric properties of binary silicides, Phys. Chem. Chem. Phys., 14, 16197, 10.1039/c2cp41826f
Kresse, 1993, Ab initio molecular-dynamics for liquid-metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558
Kresse, 1994, Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251, 10.1103/PhysRevB.49.14251
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Koepernik, 1999, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme, Phys. Rev. B, 59, 1743, 10.1103/PhysRevB.59.1743
Tong, 1975, Thermodynamics of thermoelastic martensitic transformations, Acta Metall. Mater., 23, 209, 10.1016/0001-6160(75)90185-6
Mercier, 1979, The substitution of Cu for Ni in NiTi shape memory alloys, Metall. Trans., 10A, 387, 10.1007/BF02658353
Matveeva, 1985, Diagram of martensitic transformations in system Ni–Pd–Ti (in Russian), 25
Porter, 2009
Gaskell, 2008
Liu, 1994, Thermodynamic analysis of the martensitic transformation in NiTi – 1. Effect of heat-treatment on transformation behavior, Acta Metall. Mater., 42, 2401, 10.1016/0956-7151(94)90318-2
Petit, 1819, Recherches sur quelques points importants de la théorie de la chaleur, Ann. Chim. Phys., 10, 395
Müller, 2005
Murray, 1996, Phase diagram Ni–Ti, vol. 3
Zarkevich, 2014, Stable atomic structure of NiTi austenite, Phys. Rev. B, 90, 060102, 10.1103/PhysRevB.90.060102
James, 2005, vol. 79, 159
Zhang, 2009, Energy barriers and hysteresis in martensitic phase transformations, Acta Mater., 57, 4332, 10.1016/j.actamat.2009.05.034
Zarnetta, 2010, Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability, Adv. Funct. Mater., 20, 1917, 10.1002/adfm.200902336
Z. Zhang, Shape memory alloys with special lattice parameters (thesis), Minneapolis, Master of Science, 2004.
J. Cui, Personal Communication, 2008.
Atli, 2013, Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling, Mater. Sci. Eng. A, 574, 9, 10.1016/j.msea.2013.02.035