On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys

Acta Materialia - Tập 90 - Trang 213-231 - 2015
Jan Frenzel1, Andrzej Wieczorek1, Ingo Opahle1, Burkhard Maaß1, Ralf Drautz1, Gunther Eggeler1
1Institute for Materials (IFM) and Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-Universität Bochum, 44801 Bochum, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Otsuka, 1998

Duerig, 1990

Lagoudas, 2008

Funakubo, 1987

Otsuka, 2005, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci., 50, 511, 10.1016/j.pmatsci.2004.10.001

Wechsler, 1953, On the theory of the formation of martensite, Trans. Am. Inst. Min. Metall. Eng., 197, 1503

Nishida, 2012, Self-accommodation of B19′ martensite in Ti–Ni shape memory alloys – part I. Morphological and crystallographic studies of the variant selection rule, Philos. Mag., 92, 2215, 10.1080/14786435.2012.669858

Cui, 2006, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater., 5, 286, 10.1038/nmat1593

Bhattacharya, 2004

Ball, 1992, Proposed experimental tests of a theory of fine microstructure and the 2-well problem, Philos. Trans. R. Soc. A, 338, 389

Grossmann, 2009, Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators, Metall. Mater. Trans. A, 40, 2530, 10.1007/s11661-009-9958-2

Morgan, 2004, Medical shape memory alloy applications – the market and its products, Mater. Sci. Eng. A, 378, 16, 10.1016/j.msea.2003.10.326

Olbricht, 2008, The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi, Mater. Sci. Eng. A, 481, 142, 10.1016/j.msea.2007.01.182

Young, 2010, Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading, Acta Mater., 58, 2344, 10.1016/j.actamat.2009.12.021

Wang, 1965, Crystal structure and a unique martensitic transition of TiNi, J. Appl. Phys., 36, 3232, 10.1063/1.1702955

Hanlon, 1967, Effect of martensitic transformation on electrical and magnetic properties of NiTi, Trans. Metall. Soc. AIME, 239, 1323

Mosca, 2012, Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni–Ti–Pd, Ni–Ti–Pt and Ni–Ti–Hf shape memory alloys, Phys. B, 407, 3244, 10.1016/j.physb.2011.12.077

Zarinejad, 2008, Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons, Adv. Funct. Mater., 18, 2789, 10.1002/adfm.200701423

Zarinejad, 2010, Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons, 339

Zarinejad, 2008, The crystal chemistry of martensite in NiTiHf shape memory alloys, Intermetallics, 16, 876, 10.1016/j.intermet.2008.04.004

Ren, 2001, A comparative study of elastic constants of Ti–Ni–based alloys prior to martensitic transformation, Mater. Sci. Eng. A, 312, 196, 10.1016/S0921-5093(00)01876-1

Ren, 2000, Why does the martensitic transformation temperature strongly depend on composition?, Mater. Sci. Forum, 327–328, 429, 10.4028/www.scientific.net/MSF.327-328.429

Tang, 1999, New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system, Acta Mater., 47, 3457, 10.1016/S1359-6454(99)00193-7

Ren, 1999, Understanding the martensitic transformations in TiNi-based alloys by elastic constants measurement, Mater. Sci. Eng. A, 273, 190, 10.1016/S0921-5093(99)00368-8

Frenzel, 2010, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater., 58, 3444, 10.1016/j.actamat.2010.02.019

Otsuka, 2002, Factors affecting the MS temperature and its control in shape-memory alloys, Mater. Sci. Forum, 394–395, 177, 10.4028/www.scientific.net/MSF.394-395.177

Honma, 1987, Types and mechanical characteristics of shape memory alloys, 89

Shabalovskaya, 1985, Phase-transitions in the intermetallic compound TiNi with charge-density wave formation, Phys. Status Solidi B, 132, 327, 10.1002/pssb.2221320202

Kittel, 2004

Schweinfest, 2004, Bismuth embrittlement of copper is an atomic size effect, Nature, 432, 1008, 10.1038/nature03198

Duscher, 2004, Bismuth-induced embrittlement of copper grain boundaries, Nat. Mater., 3, 621, 10.1038/nmat1191

Karlsson, 1988, Non-equilibrium grain-boundary segregation of boron in austenitic stainless-steel – 1. Large-scale segregation behavior, Acta Metall. Mater., 36, 1, 10.1016/0001-6160(88)90023-5

Ladna, 1988, Surface and grain-boundary segregation of sulfur and boron in nickel, Acta Metall. Mater., 36, 745, 10.1016/0001-6160(88)90108-3

Reed, 2006

Olbricht, 2013, Characterization of the creep properties of heat resistant 9–12% chromium steels by miniature specimen testing, Mater. Sci. Eng. A, 585, 335, 10.1016/j.msea.2013.07.067

Foroozmehr, 2011, Investigating microstructural evolution during homogenization of the equiatomic NiTi shape memory alloy produced by vacuum arc remelting, Mater. Sci. Eng. A, 528, 7952, 10.1016/j.msea.2011.07.024

Frenzel, 2004, High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles, J. Alloy Compd., 385, 214, 10.1016/j.jallcom.2004.05.002

Pelton, 2000, Optimisation of processing and properties of medical grade nitinol wire, Minim. Invasive Ther., 9, 107, 10.3109/13645700009063057

Hodgson, 2000, Nitinol melting, manufacture and fabrication, Minim. Invasive Ther., 9, 61, 10.3109/13645700009063051

Russel, 2001, Nitinol melting and fabrication, 1

Grossmann, 2008, Processing and property assessment of NiTi and NiTiCu shape memory actuator springs, Materialwiss. Werkstofftech. Technol., 39, 499, 10.1002/mawe.200800271

Khelfaoui, 2003, Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti–Ni alloy, Mater. Sci. Eng. A, 355, 292, 10.1016/S0921-5093(03)00068-6

Waitz, 2004, Martensitic phase transformations in nanocrystalline NiTi studied by TEM, Acta Mater., 52, 137, 10.1016/j.actamat.2003.08.036

Frenzel, 2011, Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures, Adv. Eng. Mater., 13, 256, 10.1002/adem.201000285

Delville, 2011, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plast., 27, 282, 10.1016/j.ijplas.2010.05.005

Ye, 2010, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Mater., 58, 490, 10.1016/j.actamat.2009.09.027

Michutta, 2006, Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates, Acta Mater., 54, 3525, 10.1016/j.actamat.2006.03.036

Dlouhy, 2008, Conventional and in situ transmission electron microscopy investigations into multistage martensitic transformations in Ni-rich NiTi shape memory alloys, Mater. Sci. Eng. A, 481, 409, 10.1016/j.msea.2007.04.123

Karaca, 2013, Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy, Acta Mater., 61, 7422, 10.1016/j.actamat.2013.08.048

Manosa, 1994, Elastic-constants of bcc Cu–Al–Ni alloys, Phys. Rev. B, 49, 9969, 10.1103/PhysRevB.49.9969

Manosa, 1993, Lattice-dynamical study of the premartensitic state of the Cu–Al–Be alloys, Phys. Rev. B, 48, 15708, 10.1103/PhysRevB.48.15708

Planes, 1992, Martensitic-transformation of Cu-based shape-memory alloys – elastic-anisotropy and entropy change, Phys. Rev. B, 45, 7633, 10.1103/PhysRevB.45.7633

Wang, 1967, Equiatomic binary compounds of Zr with transition elements Ru, Rh and Pd, J. Appl. Phys., 38, 822, 10.1063/1.1709419

Egorushkin, 1987, The electronic phase-diagram for the B2-R transition in NiTi, J. Phys. F Met. Phys., 17, 289, 10.1088/0305-4608/17/1/032

Wang, 1966, The mechanical properties as a function of temperature and free electron concentration in stoichiometric TiNi, TiCo and TiFe alloys, 899

Huismankleinherenbrink, 1991, Influence of manganese on the transformation temperatures of Ni50Ti50 shape memory alloys, Mater. Lett., 11, 145, 10.1016/0167-577X(91)90103-D

Chernenko, 1999, Compositional instability of beta-phase in Ni–Mn–Ga alloys, Scripta Mater., 40, 523, 10.1016/S1359-6462(98)00494-1

Sanchez-Alarcos, 2008, Correlation between composition and phase transformation temperatures in Ni–Mn–Ga–Co ferromagnetic shape memory alloys, Acta Mater., 56, 5370, 10.1016/j.actamat.2008.07.017

Krenke, 2007, Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys, J. Magn. Magn. Mater., 310, 2788, 10.1016/j.jmmm.2006.10.1139

Zheng, 2011, Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons, Acta Mater., 59, 5692, 10.1016/j.actamat.2011.05.044

Zhao, 1989, Electronic origin of the intermediate phase of NiTi, Phys. Rev. B, 40, 7999, 10.1103/PhysRevB.40.7999

Hatcher, 2009, Martensitic transformation path of NiTi, Phys. Rev. B, 79, 10.1103/PhysRevB.79.020202

Zhao, 1993, Electron–phonon interactions and the phonon anomaly in beta-phase NiTi, Phys. Rev. B, 48, 2031, 10.1103/PhysRevB.48.2031

Bak, 2002, Hysteresis and anomaly in the elastic properties of the shape memory alloy Ni0.507Ti0.493, Phys. Status Solidi A, 191, 42, 10.1002/1521-396X(200205)191:1<42::AID-PSSA42>3.0.CO;2-J

Fujii, 1989, Electronic-structure and lattice transformation in Ni2MnGa and Co2NbSn, J. Phys. Soc. Jpn., 58, 3657, 10.1143/JPSJ.58.3657

Opahle, 2009, Jahn–Teller-like origin of the tetragonal distortion in disordered Fe–Pd magnetic shape memory alloys, Appl. Phys. Lett., 94, 072508, 10.1063/1.3086878

Souvatzis, 2010, Ab initio study of interacting lattice vibrations and stabilization of the beta phase in Ni–Ti shape-memory alloy, Phys. Rev. B, 81, 092201, 10.1103/PhysRevB.81.092201

Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev. B, 136, 864, 10.1103/PhysRev.136.B864

Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, 1133, 10.1103/PhysRev.140.A1133

Huang, 2003, Crystal structures and shape-memory behaviour of NiTi, Nat. Mater., 2, 307, 10.1038/nmat884

Vishnu, 2010, Phase stability and transformations in NiTi from density functional theory calculations, Acta Mater., 58, 745, 10.1016/j.actamat.2009.09.019

Holec, 2011, Ab initio study of pressure stabilized NiTi allotropes: pressure-induced transformations and hysteresis loops, Phys. Rev. B, 84, 224119, 10.1103/PhysRevB.84.224119

Hatcher, 2009, Role of elastic and shear stabilities in the martensitic transformation path of NiTi, Phys. Rev. B, 80, 144203, 10.1103/PhysRevB.80.144203

Ren, 2000, A unified model for point-defect formation in B2 intermetallic compounds, Philos. Mag. A, 80, 467, 10.1080/01418610008212062

Hagen, 1998, Point defects and chemical potentials in ordered alloys, Philos. Mag. A, 77, 447, 10.1080/01418619808223764

Badura, 1993, Considerations on thermal-equilibrium defect formation in intermetallic compounds within a nearest-neighbor bond model, Z. Metallkd., 84, 405

Holec, 2014, Ab initio study of point defects in NiTi-based alloys, Phys. Rev. B, 89, 014110, 10.1103/PhysRevB.89.014110

Lu, 2007, Point defects and their interaction in TiNi from first-principles calculations, Phys. Rev. B, 75, 094108, 10.1103/PhysRevB.75.094108

Mutter, 2010, Simulation of structural phase transitions in NiTi, Phys. Rev. B, 82, 224201, 10.1103/PhysRevB.82.224201

Ma, 2010, High temperature shape memory alloys, Int. Mater. Rev., 55, 257, 10.1179/095066010X12646898728363

Eckelmeyer, 1976, Effect of alloying on the shape memory phenomenon in nitinol, Scripta Metall. Mater., 10, 667, 10.1016/0036-9748(76)90339-2

Nam, 1990, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Mater. Trans. JIM, 31, 959, 10.2320/matertrans1989.31.959

Prokoshkin, 2004, On the lattice parameters of phases in binary Ti–Ni shape memory alloys, Acta Mater., 52, 4479, 10.1016/j.actamat.2004.06.007

Rahim, 2013, Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater., 61, 3667, 10.1016/j.actamat.2013.02.054

Khalil-Allafi, 2002, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater., 50, 4255, 10.1016/S1359-6454(02)00257-4

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Opahle, 2012, High throughput density functional investigations of the stability, electronic structure and thermoelectric properties of binary silicides, Phys. Chem. Chem. Phys., 14, 16197, 10.1039/c2cp41826f

Kresse, 1993, Ab initio molecular-dynamics for liquid-metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558

Kresse, 1994, Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251, 10.1103/PhysRevB.49.14251

Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Koepernik, 1999, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme, Phys. Rev. B, 59, 1743, 10.1103/PhysRevB.59.1743

Tong, 1975, Thermodynamics of thermoelastic martensitic transformations, Acta Metall. Mater., 23, 209, 10.1016/0001-6160(75)90185-6

Mercier, 1979, The substitution of Cu for Ni in NiTi shape memory alloys, Metall. Trans., 10A, 387, 10.1007/BF02658353

Matveeva, 1985, Diagram of martensitic transformations in system Ni–Pd–Ti (in Russian), 25

Porter, 2009

Gaskell, 2008

Liu, 1994, Thermodynamic analysis of the martensitic transformation in NiTi – 1. Effect of heat-treatment on transformation behavior, Acta Metall. Mater., 42, 2401, 10.1016/0956-7151(94)90318-2

Petit, 1819, Recherches sur quelques points importants de la théorie de la chaleur, Ann. Chim. Phys., 10, 395

Müller, 2005

Murray, 1996, Phase diagram Ni–Ti, vol. 3

Zarkevich, 2014, Stable atomic structure of NiTi austenite, Phys. Rev. B, 90, 060102, 10.1103/PhysRevB.90.060102

James, 2005, vol. 79, 159

Zhang, 2009, Energy barriers and hysteresis in martensitic phase transformations, Acta Mater., 57, 4332, 10.1016/j.actamat.2009.05.034

Zarnetta, 2010, Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability, Adv. Funct. Mater., 20, 1917, 10.1002/adfm.200902336

Z. Zhang, Shape memory alloys with special lattice parameters (thesis), Minneapolis, Master of Science, 2004.

J. Cui, Personal Communication, 2008.

Atli, 2013, Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling, Mater. Sci. Eng. A, 574, 9, 10.1016/j.msea.2013.02.035

Fähler, 2012, Caloric effects in ferroic materials: new concepts for cooling, Adv. Eng. Mater., 14, 10, 10.1002/adem.201100178