On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Michaud, F., de Lafontaine, J., and Caron, S., A Spherical Robot for Planetary Surface Exploration, in Proc. 6th Internat. Symp. on Artificial Intelligence, Robotics and Automation in Space, 2001, Paper AM041.
Michaud, F. and Caron, S., Roball, the Rolling Robot, Auton. Robots, 2002, vol. 12, no. 2, pp. 211–222.
Bicchi, A., Balluchi, A., Prattichizzo, D., and Gorelli, A., Introducing the “Sphericle”: An Experimental Testbed for Research and Teaching in Nonholonomy, in Proc. IEEE Internat. Conf. on Robotics and Automation (Albuquerque, New Mexico, April 21–27, 1997): Vol. 3, pp. 2620–2625.
Bhattacharya, S. and Agrawal, S., Spherical Rolling Robot: A Design and Motion Planning Studies, in IEEE Trans. Robot. Autom., 2000, vol. 16, no. 6, pp. 835–839.
Javadi, A. and Mojabi, P., Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot, J. Dyn. Syst. Meas. Control Trans. ASME, 2004, vol. 126, no. 3, pp. 678–683.
Balasubramanian, R., Modeling and Control Techniques for a Class of Mobile Robot Error Recovery Problems: Ph. D. Dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2006.
Ishikawa, M., Kobayashi, Y., Kitayoshi, R., and Sugie, T., The Surface Walker: A Hemispherical Mobile Robot with Rolling Contact Constraints, in Proc. IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems IROS’2009 (St. Louis, USA, October 10–15, 2009), pp. 2446–2451.
Joshi, V. and Banavar, R., Motion Analysis of a Spherical Mobile Robot, Robotica, 2009, vol. 27, no. 3, pp. 343–353.
Bobylev, D., On a Ball with a Gyroscope inside Rolling without Sliding on the Horizontal Plane, Mat. Sb., 1892, vol. 16, no. 3, pp. 544–581 (Russian).
Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Math. Sb., 1903, vol. 24, no. 1, pp. 139–168. English transl.: Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148.
Kilin, A.A., The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.
Borisov, A. V. and Mamaev, I. S., Rolling of a Rigid Body on a Plane and Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.
Li, Z. and Canny, J., Motion of Two Rigid Bodies with Rolling Constraint, IEEE Trans. Robot. Autom., 1990, vol. 6, no. 1, pp. 62–72.
Jurdjevic, V., The Geometry of the Plate-Ball Problem, Arch. Ration. Mech. Anal., 1993, vol. 124, no. 4, pp. 305–328.
Marigo, A. and Bicchi, A., Rolling Bodies with Regular Surface: Controllability Theory and Applications, IEEE Trans. Autom. Control, 2000, vol. 45, no. 9, pp. 1586–1599.
Mukherjee, R., Minor, M., and Pukrushpan, J., Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem, J. Dyn. Syst. Meas. Control Trans. ASME, 2002, vol. 124, no. 4, pp. 502–511.
Svinin, M. and Hosoe, S., Motion Planning Algorithms for a Rolling Sphere with Limited Contact Area, IEEE Trans. Robot., 2008, vol. 24, no. 3, pp. 612–625.
Harada, K., Kawashima, T., and Kaneko, M., Rolling Based Manipulation under Neighborhood Equilibrium, Int. J. Robot. Res., 2002, vol. 21, nos. 5–6, pp. 463–474.
Suzuki, K., Svinin, M., and Hosoe, S., Motion Planning for Rolling Based Locomotion, J. Robot. Mechatron., 2005, vol. 17, no. 5, pp. 537–545.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.
Shen, J., Schneider, D.A., and Bloch, A.M., Controllability and Motion Planning of a Multibody Chaplygin’s Sphere and Chaplygin’s Top, Internat. J. Robust Nonlinear Control, 2008, vol. 18, no. 9, pp. 905–945.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors. II, Regul. Chaotic Dyn., 2013, vol. 13, nos. 1–2, pp. 144–158.
Bolotin, S., The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 559–570.
Murray, R., Li, Z., and Sastry, S., A Mathematical Introduction to Robotic Manipulation, Boca Raton, FL: CRC Press, 1994.
Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence, RI: AMS, 1972.
Kiss, B., Motion Planning and Control of a Class of Flat and Liouvillian Mechanical Systems: Ph. D. dissertation, École Nationale Supérieure des Mines de Paris (Fontainebleau, France), 2001
Kiss, B., Lévine, J., and Lantos, B., On Motion Planning for Robotic Manipulation with Permanent Rolling Contacts, Int. J. Robot. Res., 2002, vol. 21, nos. 5–6, pp. 443–461.
Martin, P. and Rouchon, P., Any (Controllable) Driftless System with 3 Inputs and 5 States is Flat, Syst. Control Lett., 1995, vol. 25, pp. 167–173.
Lévine, J., Analysis and Control of Nonlinear Systems: A Flatness-Based Approach, Berlin: Springer, 2009.
Svinin, M. and Hosoe, S., Planning of Smooth Motions for a Ball-Plate System with Limited Contact Area, in Proc. IEEE Internat. Conf. on Robotics and Automation (Pasadena, CA, May 19–23, 2008): Vol. 1, pp. 1193–1200.
Bryson, A. and Ho, Y.-C., Applied Optimal Control: Optimization, Estimation and Control, New York: Hemisphere Publ. Corp., 1975.