On the discrete spectrum of spin-orbit Hamiltonians with singular interactions
Tóm tắt
We give a variational proof of the existence of infinitely many bound states placed below the continuous spectrum for spin-orbit Hamiltonians (including the Rashba and Dresselhaus cases) perturbed by measure potentials, thus extending results of J. Brüning, V. Geyler, K. Pankrashkin, J. Phys. A: Math. Theor. 40 F113–F117 (2007).
Tài liệu tham khảo
L. Brandolini, G. Gigante, A. Greenleaf, A. Iosevich, A. Seeger, and G. Travaglini, “Average Decay Estimates for Fourier Transforms of Measures Supported on Curves,” J. Geom. Anal. 17 15–40 (2007).
J. F. Brasche, “Upper Bounds for Neumann-Schatten Norms,” Potential Anal. 14, 175–205 (2001).
J. F. Brasche, P. Exner, Yu.A. Kuperin, and P. Šeba, “Schrödinger Operators with Singular Interactions,” J. Math. Anal. Appl. 184, 112–139 (1994).
J. Brüning, V. Geyler, and K. Pankrashkin, “On the Number of Bound States for Weak Perturbations of Spin-Orbit Hamiltonians,” J. Phys. A: Math. Theor. 40, F113–F117 (2007).
J. Brüning, V. Geyler, and K. Pankrashkin, “Explicit Green Functions for Spin-Orbit Hamiltonians,” J. Phys. A: Math. Theor. 40, F697–F704 (2007).
Yu.A. Bychkov and E. I. Rashba, “Properties of a 2D Electron Gas with Lifted Spectral Degeneracy,” JETP Lett. 39, 78–81 (1984).
W. zu Castell, F. Filbir, and R. Szwarc, “Strictly Positive Definite Functions in ℝd,” J. Approx. Theory 137, 277–280 (2005).
A. V. Chaplik and L. I. Magarill, “Bound States in a Two-Dimensional Short Range Potential Induced by Spin-Orbit Interaction,” Phys. Rev. Lett. 96, 126402 (2006).
W. Littman, “Fourier Transforms of Surface-Carried Measures and Differentiability of Surface Averages,” Bull. Amer. Math. Soc. 69, 766–770 (1963).
B. P. Marshall, “Decay Rates of Fourier Transforms of Curves,” Trans. Amer. Math. Soc. 310, 115–126 (1988).
G. D. Raikov and S. Warzel, “Quasi-Classical Versus Non-Classical Spectral Asymptotics for Magnetic Schrödinger Operators with Decreasing Electric Potentials,” Rev. Math. Phys. 14, 1051–1072 (2002).
E. I. Rashba and V. I. Sheka, “Electric-Dipole Spin Resonance,” in G. Landwehr and E. I. Rashba, Eds., Landau Level Spectroscopy (Elsevier, Amsterdam, 1991), pp. 131–206.
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol IV: Analysis of Operators (Academic Press, New York-London, 1978).
G. Rozenblum and G. Tashchiyan, “On the Spectral Properties of the Perturbed Landau Hamiltonian,” preprint math-ph/0605038 in arXiv.
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, 1993).
R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003).
K. Yang and M. de Llano, “Simple Variational Proof That Any Two-Dimensional Potential Well Supports at Least One Bound State,” Amer. J. Phys. 57, 85–86 (1989).