On the diffusion geometry of graph Laplacians and applications
Tài liệu tham khảo
Arnold, 2016, Effective confining potential of quantum states in disordered media, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.056602
Banuelos, 1999, On the ‘hot spots’ conjecture of J. Rauch, J. Funct. Anal., 164, 1, 10.1006/jfan.1999.3397
Banuelos, 1994, Brownian motion and the fundamental frequency of a drum, Duke Math. J., 75, 575, 10.1215/S0012-7094-94-07517-0
Bonacich, 1972, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 113, 10.1080/0022250X.1972.9989806
Bovier, 2002, Metastability and low lying spectra in reversible Markov chains, Comm. Math. Phys., 228, 219, 10.1007/s002200200609
Bovier, 2004, Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times, J. Eur. Math. Soc. (JEMS), 6, 399, 10.4171/JEMS/14
Bovier, 2005, Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues, J. Eur. Math. Soc. (JEMS), 7, 69, 10.4171/JEMS/22
Burdzy, 1999, A counterexample to the “hot spots” conjecture, Ann. of Math. (2), 149, 309, 10.2307/121027
Dyer, 1991, Computing the Volume of Convex Bodies: A Case Where Randomness Provably Helps, vol. 44
Filoche, 2012, Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA, 109, 14761, 10.1073/pnas.1120432109
Gavish, 2013, Normalized cuts are approximately inverse exit times, SIAM J. Matrix Anal. Appl., 34, 757, 10.1137/110826928
Georgiev
Hsu, 1985, Probabilistic approach to the Neumann problem, Comm. Pure Appl. Math., 38, 445, 10.1002/cpa.3160380406
Levin, 2009
Meila, 2001
Melas, 1992, On the nodal line of the second eigenfunction of the Laplacian in R2, J. Differential Geom., 35, 255, 10.4310/jdg/1214447811
Ng, 2002, On spectral clustering: analysis and an algorithm, vol. 14
Payne, 1967, Isoperimetric inequalities and their applications, SIAM Rev., 9, 453, 10.1137/1009070
Rachh
Steinerberger, 2014, Lower bounds on nodal sets of eigenfunctions via the heat flow, Comm. Partial Differential Equations, 39, 2240, 10.1080/03605302.2014.942739
Steinerberger, 2015, Sharp L1-Poincaré inequalities correspond to optimal hypersurface cuts, Arch. Math., 105, 179, 10.1007/s00013-015-0778-x
Steinerberger, 2017, Localization of quantum states and landscape functions, Proc. Amer. Math. Soc., 145, 2895, 10.1090/proc/13343