On the descent numbers and major indices for the hyperoctahedral group

Advances in Applied Mathematics - Tập 38 - Trang 275-301 - 2007
Chak-On Chow1, Ira M. Gessel2
1Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan
2Department of Mathematics, Brandeis University, Waltham, MA 02454-9110, USA

Tài liệu tham khảo

Adin, 2001, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math., 27, 210, 10.1006/aama.2001.0731 Adin, 2005, Descent representations and multivariate statistics, Trans. Amer. Math. Soc., 357, 3051, 10.1090/S0002-9947-04-03494-4 Adin, 2001, The flag major index and group actions on polynomial rings, European J. Combin., 22, 431, 10.1006/eujc.2000.0469 Andrews, 1971, On the foundations of combinatorial theory V, Eulerian differential operators, Stud. Appl. Math., 50, 345, 10.1002/sapm1971504345 Andrews, 1976 Biagioli, 2003, Major and descent statistics for the even-signed permutation group, Adv. in Appl. Math., 31, 163, 10.1016/S0196-8858(02)00561-4 Brenti, 1989, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc., 81 Brenti, 1994, q-Eulerian polynomials arising from Coxeter groups, European J. Combin., 15, 417, 10.1006/eujc.1994.1046 Carlitz, 1975, A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly, 82, 51, 10.2307/2319133 Chow, 2003, On the Eulerian polynomials of type D, European J. Combin., 24, 391, 10.1016/S0195-6698(03)00027-1 Clarke, 1994, Eulerian calculus. I. Univariate statistics, European J. Combin., 15, 345, 10.1006/eujc.1994.1039 Clarke, 1995, Eulerian calculus. II. An extension of Han's fundamental transformation, European J. Combin., 16, 221, 10.1016/0195-6698(95)90029-2 Clarke, 1995, Eulerian calculus. III. The ubiquitous Cauchy formula, European J. Combin., 16, 329, 10.1016/0195-6698(95)90016-0 Comtet, 1974 de Médicis, 1993, A unified combinatorial approach for q- (and p,q-) Stirling numbers, J. Statist. Plann. Inference, 34, 89, 10.1016/0378-3758(93)90036-6 Foata, 1970, Théorie géométrique des polynômes Eulériens, vol. 138 Foata, 2001, Babson–Steingrímsson statistics are indeed Mahonian (and sometimes even Euler–Mahonian), Adv. in Appl. Math., 27, 390, 10.1006/aama.2001.0741 Garsia, 1979, On the “maj” and “inv” q-analogues of Eulerian polynomials, Linear Multilinear Algebra, 8, 21, 10.1080/03081087908817296 I.M. Gessel, Generating functions and enumeration of sequences, PhD thesis, Massachusetts Institute of Technology, 1977 Gould, 1961, The q-Stirling numbers of first and second kinds, Duke Math. J., 28, 281, 10.1215/S0012-7094-61-02826-5 Hiller, 1982, Geometry of Coxeter Groups, vol. 54 Humphreys, 1990 MacMahon, 1916, Two applications of general theorems in combinatory analysis: (1) To the theory of inversion of permutations; (2) To the ascertainment of the numbers of terms in the development of a determinant which has amongst its elements an arbitrary number of zeros, Proc. London Math. Soc. (2), 15, 314 MacMahon, 1960 Park, 1994, P-partitions and q-Stirling numbers, J. Combin. Theory Ser. A, 68, 33, 10.1016/0097-3165(94)90090-6 Reiner, 1993, Signed permutation statistics, European J. Combin., 14, 553, 10.1006/eujc.1993.1058 Reiner, 1993, Signed permutation statistics and cycle type, European J. Combin., 14, 569, 10.1006/eujc.1993.1059 Sachkov, 1995 Stanley, 1997 J.R. Stembridge, Ordinary representations of Bn, unpublished manuscripts, 1988 Wachs, 1991, The p,q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A, 56, 27, 10.1016/0097-3165(91)90020-H