On the degeneracy property of some linear positive operators
Tóm tắt
The degeneracy property of a wide class of linear positive operators is investigated; a short proof of a Passow's conjecture is given for this class. Finally an application of these results in CAGD is also discussed.
Tài liệu tham khảo
R. H Bartles, J. C Beatty, B. B. Barsky An Introduction to the Use of Splines in Computer Graphic, 1987, Morgan Kaufman Publishers, Inc., Los Altos, Ca.
B. Della Vecchia,A new class of linear positive operators of Bernstein type, Math. Rev. Anal. Num. Theor. Approx. 17 (2) (1988), 113–124
G. Farin, P. J. Barry Link between Bézier and Lagrange curve and surface schemes, CAD 18 (10), (1986), 525–528.
J. Favard,Sur le multiplicateurs d'interpolation, J. Math. Pures Appl. 23 (1944), 219–247.
A. R. Forrest,Interactive Interpolation and Approximation by Bézier Polynomials, Comput. J. 15 (1972), 71–79.
D. Freedman, E. Passow,Degenerate Bernstein Polynomials, J. Approx. Theory 39 (1983), 89–92.
R. N. Goldman,An Urnful of Blending Functions, IEEE Computer Graphics and Applications 3 (7) (1983), 49–54.
R. N. Goldman,Polya's urn model and computer aided geometric design, SIAM J. Algebraic Discrete Methods 6 (1) (1985), 1–28.
T. N. T. Goodman, A. Sharma A property of Bernstein-Schoenberg spline operators, Proc. Edinburg Math. Soc. 28 (1985), 333–340.
T. Hermann,Approximation of unbounded functions on unbounded interval, Acta Math. Acad. Sci. Hungar. 29 (1977), 393–398.
S. Karlin,Total Positivity, Vol. I (1968), Stanford Univ. Press, Stanford, Calif.
G. Mastroianni Su und classe di operatori lineari e positivi, Rend. Accad. Sci. Fis. Mat. Napoli Serie IV, XLVIII (1980), 217–235.
G. Mastroianni Una generalizzazione dell'operatore di Mirakyan, Rend. Accad. Sci. Fis. Mat. Napoli Serie IV XLVIII (1980), 237–252.
G. Mastroianni, M. R. Occorsio Sulle derivate dei polinomi di Stancu, Rend. Accad. Sci. Fis. Mat. Napoli Serie IV (1978), 273–281.
G. Mastroianni, M. R. Occorsio Una generalizzazione dell'operatore di Stancu, Rend. Accad. Sci. Fis. Mat. Napoli Serie IV (1978), 151–169.
G. Mastroianni, M. R. Occorsio,A new operator of Bernstein type, Math. Rev. Anal. Theo. Approx. 16 (1) (1987), 55–63.
M. E. Mortenson,Geometric Modelling, (1985), John Wiley & Sons, New York.
E. Passow,Some unusual Bernstein Polynomials, in: Approx. Theo. IV (Proc. Int. Sympos. College Station 1983; ed. by C. K. Chui at al.) (1983), 649–652, New York, Accad. Press.
S. P. Pethe, G. C. Jain Approximation of functions by a Bernstein-type operator, Canad. Math. Bull. 15 (4) (1972), 551–557.
T. Popoviciu Sur quelques propriétés des fonctions d'une et de deux variables réeles, Math. VIII (1934), 1–86.
I. J. Schoenberg,On Variation Diminishing Approximation Methods in: On Numerical Approximation (Proc. Sympos. Conducted by the MRC; ed by R. E. Langer) (1959), 249–274, Madison Wisconsin, Univ. of Wisconsin Press.
D. D. Stancu,On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials, Math. Z. 98 (1967), 46–51.
D. D. Stancu,Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 13 (1968), 1173–1194.
D. D. Stancu,Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Pures Appl. 16 (5) (1969), 673–691.
D. D. Stancu,Approximation properties of a class of linear positive operators, Math. 3 (1970), 33–38.
D. D. Stancu,On the remainder of approximation of functions by means of a parameterdependent linear polynomial operator, Math. 5 (1971), 59–65.
D. D. Stancu,Approximation of functions by means of some new classes of positive linear operators, in: Proc. Conf. Math. Res. Inst. Oberwolfach (1972) ed. by L. Collatz and G. Meinardus.
D. D. Stancu,A study of the remainder in an approximation formula using a Favard-Szasz type operator, Stud. Univ. Babes-Bolyai, Math. XXV (1980), 70–76.
F. Stancu,Asupra restului in formulele de aproximare prin operatorii lui Mirakyan de una si douą variabile, Anal. Stud. Univ. «Al. I. Cuza», 14 (1968), 415–422.
F. Stancu,Asupra aproximąrii functiilor de una si douą variabile cu ajutorul operatorilor lui Baskakov, Stud. Cerc. Mat. 22 (1970), 531–542.
O. Szasz,Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards 45 (1950), 239–245.
W. B. Temple,Stieltjes integral representation of convex functions, Duke Math. J. 21 (1954), 527–531.