On the definition and examples of cones and Finsler spacetimes

Miguel Ángel Javaloyes1, Miguel Sánchez2
1Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, Espinardo, 30100, Murcia, Spain
2Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aazami, A.B., Javaloyes, M.A.: Penrose’s singularity theorem in a Finsler spacetime. Class. Quantum Gravity 33(2), 025003 (2016). 22

Anastasiei, M.: On the Geometry of Time-Dependent Lagrangians. Mathematical and Computing Modelling, vol. 20(4/5), pp. 67–81 . Pergamon Press, Oxford (1994)

Asanov, G.S.: Finsler Geometry, Relativity and Gauge Theories. Fundamental Theories of Physics. D. Reidel Publishing Co., Dordrecht (1985)

Azagra, D.: Global and fine approximation of convex functions. Proc. Lond. Math. Soc. 107(4), 799–824 (2013)

Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics. Springer, New York (2000)

Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66(3), 377–435 (2004)

Bartolo, R., Caponio, E., Germinario, A.V., Sánchez, M.: Convex domains of Finsler and Riemannian manifolds. Calc. Var. Partial Differ. Eq. 40(3–4), 335–356 (2011)

Bartolo, R., Germinario, A., Sánchez, M.: Convexity of domains of Riemannian manifolds. Ann. Global Anal. Geom. 21(1), 63–83 (2002)

Beem, J.K.: Indefinite Finsler spaces and timelike spaces. Can. J. Math. 22, 1035–1039 (1970)

Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, volume 202 of Monographs and Textbooks in Pure and Applied Mathematics, 2nd edn. Marcel Dekker, Inc., New York (1996)

Bernard, P., Suhr, S.: Lyapounov functions of closed cone fields: from Conley Theory to time functions. Commun. Math. Phys. 359(2), 467–498 (2018)

Bogoslovsky, G.: Some physical displays of the space anisotropy relevant to the feasibility of its being detected at a laboratory. In: M.C. Duffy, V.O. Gladyshev, A.N. Morozov, P. Rowlands (eds.) Physical Interpretation of Relativity Theory: Proceedings of XIII International Meeting. Moscow, 2–5 July 2007. BMSTU, Moscow. Available at arXiv e-prints, arXiv: 0706.2621 (2007)

Bucataru, I., Constantinescu, O.: Helmholtz conditions and symmetries for the time dependent case of the inverse problem of the calculus of variations. J. Geom. Phys. 60, 1710–1725 (2010)

Caponio, E., Javaloyes, M.A., Sánchez, M.: Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes. ArXiv e-prints, arXiv: 1407.5494 (2014)

Caponio, E., Stancarone, G.: Standard static Finsler spacetimes. Int. J. Geom. Methods Mod. Phys. 13(4), 1650040 (2016). 25

Caponio, E., Stancarone, G.: On Finsler spacetimes with a timelike Killing vector field. Class. Quantum Gravity 35(8), 085007 (2018). 28

Edwards, B.R., Kostelecký, V.A.: Riemann-Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 786, 319–326 (2018)

Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 152(2), 303–339 (2012)

Fuster, A., Pabst, C.: Finsler $$pp$$-waves. Phys. Rev. D 94(10), 104072 (2016). 5

Fuster, A., Pabst, C., Pfeifer, C.: Berwald spacetimes and very special relativity. Phys. Rev. D 98, 084062 (2018)

Ghomi, M.: The problem of optimal smoothing for convex functions. Proc. Am. Math. Soc. 130(8), 2255–2259 (2002)

Gibbons, G.W., Gomis, J., Pope, C.N.: General very special relativity is Finsler geometry. Phys. Rev. D 76(8), 081701 (2007). 5

Gibbons, G.W.: A Spacetime Geometry picture of Forest Fire Spreading and of Quantum Navigation. ArXiv e-prints, arXiv: 1708.02777 (2017)

Hohmann, M., Pfeifer, C.: Geodesics and the magnitude-redshift relation on cosmologically symmetric Finsler spacetimes. Phys. Rev. D 95, 104021 (2017)

Ishikawa, H.: Note on Finslerian relativity. J. Math. Phys. 22(5), 995–1004 (1981)

Javaloyes, M.A.: Anisotropic tensor calculus. Int. J. Geom. Methods Mod. Phys. 16(2), 1941001 (2019)

Javaloyes, M.A., Sánchez, M.: Finsler metrics and relativistic spacetimes. Int. J. Geom. Methods Mod. Phys. 11(9), 1460032 (2014)

Javaloyes, M.A., Sánchez, M.: On the definition and examples of Finsler metrics. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(3), 813–858 (2014)

Javaloyes, M.A., Sánchez, M.: Wind Riemannian spaceforms and Randers–Kropina metrics of constant flag curvature. Eur. J. Math. 3(4), 1225–1244 (2017)

Javaloyes, M.A., Soares, B.: Anisotropic conformal invariance of lightlike geodesics in pseudo-Finsler manifolds. preprint (2018)

Javaloyes, M.A., Vitório, H.: Some properties of Zermelo navigation in pseudo-Finsler metrics under an arbitrary wind. Houst. J. Math. 44(4), 1147–1179 (2018)

Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley Classics Library. Wiley, New York (1996). (Reprint of the 1969 original, A Wiley-Interscience Publication)

Kokkendorff, S.L.: On the existence and construction of stably causal Lorentzian metrics. Differ. Geom. Appl. 16(2), 133–140 (2002)

Kostelecký, V.A.: Riemann–Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 701(1), 137–143 (2011)

Kostelecký, V.A., Russell, N., Tso, R.: Bipartite Riemann–Finsler geometry and Lorentz violation. Phys. Lett. B 716(3–5), 470–474 (2019)

Laemmerzahl, C., Perlick, V., Hasse, W.: Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D 86, 104042 (2012)

Makhmali, O.: Differential geometric aspects of causal structures. SIGMA Symmetry Integrability Geom. Methods Appl. 14, Paper No. 080 (2018)

Markvorsen, S.: A Finsler geodesic spray paradigm for wildfire spread modelling. Nonlinear Anal. Real World Appl. 28, 208–228 (2016)

Markvorsen, S.: Geodesic sprays and frozen metrics in rheonomic Lagrange manifolds. ArXiv e-prints, arXiv: 1708.07350 (2017)

Matveev, V.S., Troyanov, M.: The Binet–Legendre metric in Finsler geometry. Geom. Topol. 16(4), 2135–2170 (2012)

Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math. 177(4), 569–625 (2015)

Minguzzi, E.: Light cones in Finsler spacetime. Commun. Math. Phys. 334(3), 1529–1551 (2015)

Minguzzi, E.: An equivalence of Finslerian relativistic theories. Rep. Math. Phys. 77(1), 45–55 (2016)

Minguzzi, E.: Affine sphere relativity. Commun. Math. Phys. 350(2), 749–801 (2017)

Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich (2008)

Morales Álvarez, P.: An introduction to Lorentz-Finsler Geometry, Master Thesis, U. Granada. Master FisyMat, supervisors MA. Javaloyes & M. Sánchez. http://gigda.ugr.es/digap/tesis (2015). Accessed 6 Dec 2019

O’Neill, B.: Semi-Riemannian Geometry, volume 103 of Pure and Applied Mathematics. Academic Press, Inc., New York (1983)

Papagiannopoulos, G., Basilakos, S., Paliathanasis, A., Savvidou, S., Stavrinos, P.C.: Finsler–Randers cosmology: dynamical analysis and growth of matter perturbations. Class. Quantum Gravity 34(22), 225008 (2017). 20

Perlick, V.: Fermat principle in Finsler spacetimes. Gen. Relat. Gravit. 38(2), 365–380 (2006)

Pfeifer, C., Wohlfarth, M.: Causal structure and electrodynamics on Finsler space-times. Phys. Rev. D 84, 044039 (2011)

Russell, N.: Finsler-like structures from Lorentz-breaking classical particles. Phys. Rev. D 91(4), 045008 (2015). 9

Sachs, R.K., Wu, H.H.: General Relativity for Mathematicians, vol. 48. Springer, New York (1977). (Graduate Texts in Mathematics)

Sánchez, M.: Some remarks on causality theory and variational methods in Lorenzian manifolds. Conf. Semin. Mat. Univ. Bari (265), ii+12 (1997)

Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht (2001)

Vacaru, S.I.: Principles of Einstein–Finsler gravity and perspectives in modern cosmology. Int. J. Mod. Phys. D 21(9), 1250072 (2012). 40

Voicu, N.: Volume forms for time orientable Finsler spacetimes. J. Geom. Phys. 112, 85–94 (2017)

Voicu, N.: Conformal maps between pseudo-Finsler spaces. Int. J. Geom. Methods Mod. Phys. 15(1), 1850003 (2018)

Warner, F.W.: The conjugate locus of a Riemannian manifold. Am. J. Math. 87, 575–604 (1965)

Whitehead, J.H.C.: Convex regions in the geometry of paths-addendum. Q. J. Math. 4, 226–227 (1933)