On the cubic equation with its Siebeck–Marden–Northshield triangle and the quartic equation with its tetrahedron
Tài liệu tham khảo
Prodanov, 2020, On the determination of the number of positive and negative polynomial zeros and their isolation, Open Math. (de Gruyter), 18, 1387, 10.1515/math-2020-0079
Prodanov, 2021, Classification of the real roots of the quartic equation and their pythagorean tunes, Int. J. Appl. Comput. Math. (Springer), 7, 218, 10.1007/s40819-021-01152-w
Prodanov, 2022, Isolation intervals of the real roots of the parametric cubic equation and improved complete root classification, Adv. Theory Simul. (Wiley), 10.1002/adts.202100638
Prodanov, 2022, A method for locating the real roots of the symbolic quintic equation using quadratic equations, Adv. Theory Simul. (Wiley), 10.1002/adts.202200011
Rees, 1922, Graphical discussion of the roots of a quartic equation, Amer. Math. Monthly, 29, 51, 10.1080/00029890.1922.11986100
Viète, 1646
Descartes, 1637
Nickalls, 2006, Viète, descartes and the cubic equation, Math. Gaz., 90, 203, 10.1017/S0025557200179598
Northshield, 2013, Geometry of cubic polynomials, Math. Mag., 86, 136, 10.4169/math.mag.86.2.136
Siebeck, 1864, Ueber eine neue analytische behandlungweise der brennpunkte, J. Reine Angew. Math., 64, 175
Marden, 1966
Marden, 1945, A note on the zeros of the sections of a partial fraction, Bull. Amer. Math. Soc., 51, 935, 10.1090/S0002-9904-1945-08470-5
Kalman, 2008, An elementary proof of Marden’s theorem, Amer. Math. Monthly, 115, 330, 10.1080/00029890.2008.11920532
Badertscher, 2014, A simple direct proof of Marden’s theorem, Amer. Math. Monthly, 121, 547, 10.4169/amer.math.monthly.121.06.547
Steiner, 1828, Géométrie pure. Développment d’une série de théorèmes relatifs aux sections coniques, Ann. Math. Pures Appl., 19, 37
Prodanov, 2022, The Siebeck–Marden–Northshield theorem and the real roots of the symbolic cubic equation, Resultate der Mathematik (Birkhäuser), 77, 126, 10.1007/s00025-022-01667-8
Chalkley, 1975, Quartic equations and tetrahedral symmetries, Math. Mag., 48, 211, 10.1080/0025570X.1975.11976489
Nickalls, 2012, The quartic equation: Alignment with an equivalent tetrahedron, Math. Gaz., 96, 49, 10.1017/S0025557200003958
Nickalls, 2009, The quartic equation: Invariants and Euler’s solution revealed, Math. Gaz., 93, 66, 10.1017/S0025557200184190
Cayley, 1861, A discussion on the Sturmian constants for cubic and quartic equations, Q. J. Pure Appl. Math., IV, 7
Sturm, 1829, Bulletin Général et Universel des Annonces et des Nouvelles Scientifiques, Bull. Sci. Férussac, 11, 419
Petrovich, 1909, Une Classe Remarquable de Séries Entiérs
Liang, 2008, The complete root classification of a parametric polynomial on an interval
Yang, 1996, A complete discrimination system for polynomials, Sci. China (Series E), 39, 628