On the coordinatization of oriented matroids

Discrete & Computational Geometry - Tập 1 - Trang 293-306 - 1986
Jürgen Bokowski1, Bernd Sturmfels1
1Technische Hochschule Darmstadt Fachbereich Mathematik, Darmstadt, West Germany

Tóm tắt

Several important and hard realizability problems of combinatorial geometry can be reduced to the realizability problem of oriented matroids. In this paper we describe a method to find a coordinatization for a large class of realizable cases. This algorithm has been used successfully to decide several geometric realizability problems. It is shown that all realizations found by our algorithm fulfill the isotopy property.

Tài liệu tham khảo

A. Altshuler and I. Shemer, Construction theorems for polytopes,Israel J. Math. 47 (1984), 99–100. L. J. Billera and B. S. Munson, Polarity and inner products in oriented matroids, Preprint, Cornell University, Ithaca, 1983. R. G. Bland and M. Las Vergnas, Orientability of matroids,J. Combin. Theory Ser. B 24 (1978), 94–123. J. Bokowski and U. Brehm, A new polyhedron of genus 3 with 10 vertices,Colloq. Math. Soc. János Bolyai, to appear. J. Bokowski, G. Ewald and P. Kleinschmidt, On combinatorial and affine automorphisms of polytopes,Israel J. Math. 47 (1984), 123–130. J. Bokowski and K. Garms, Altshuler's sphereM 10425 is not polytopal,European J. Combin., to appear. J. Bokowski and I. Shemer, Neighborly 6-polytopes with 10 vertices,Israel J. Math., submitted. J. Bokowski and B. Sturmfels, Oriented matroids and chirotopes—Problems of geometric realizability, Preprint, TH, Darmstadt, 1985. J. Bokowski and B. Sturmfels, Polytopal and non-polytopal spheres—An algorithmic approach, Preprint, TH, Darmstadt, 1985. R. Cordovil and P. Duchet, On the number of sign-invariant points in oriented matroids, Preprint, Lisboa, 1985. G. Ewald, P. Kleinschmidt, U. Pachner and C. Schulz, Neuere Entwicklungen in der kombinatorischen Konvexgeometrie, inContributions to Geometry (J. Tölke and J. M. Wills eds.) (Proceedings of the Geometry-Symposium, Siegen, June, 1978), Birkhäuser, Basel, J. E. Goodman and R. Pollack, Upper bounds for configurations and polytopes inR d,Discrete Comput. Geom., to appear. B. Grünbaum,Convex Polytopes, Interscience, London, 1967. M. Las Vergnas, Extensions ponctuelles d'une géométrie combinatoire orientée.Colloque C.N.R.S. Problemes combinatoires et théorie des graphes, Orsay 1976, Paris, 1978. M. Las Vergnas, Matroides orientables, Preprint, April 1974; announced inC. R. Acad. Sci. Paris 280 (January 20, 1975). M. Las Vergnas, Bases in oriented matroids,J. Combin. Theory Ser. B 25 (1978), 283–289. J. Lawrence, Oriented matroids and multiple ordered sets,Linear Algebra Appl. 48 (1982), 1–12. Tagungsbericht Oberwolfach, Tagung über kombinatorische Geometrie, September 1984, List of problems. B. Sturmfels,Zur linearen Realisierbarkeit orientierter Matroide. Diplomarbeit, Darmstadt, 1985. A. Tarski,A Decision Method for Elementary Algebra and Geometry. Berkeley and Los Angeles, 1951.