On the convergence of the ensemble Kalman filter
Tóm tắt
Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and L
p
bounds on the ensemble then give L
p
convergence.
Tài liệu tham khảo
B.D.O. Anderson, J.B. Moore: Optimal Filtering. Prentice-Hall, Englewood Cliffs, 1979.
J. L. Anderson: An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review 129 (1999), 2884–2903.
J.D. Beezley: High-dimensional data assimilation and morphing ensemble Kalman filters with applications in wildfire modeling. PhD. Thesis. Department of Mathematical and Statistical Sciences, University of Colorado Denver, 2009, http://math.cudenver.edu/~jbeezley/jbeezley thesis.pdf.
P. Billingsley: Probability and Measure, 3rd edition. John Wiley & Sons Inc., New York, 1995.
G. Burgers, P. J. van Leeuwen, G. Evensen: Analysis scheme in the ensemble Kalman filter. Monthly Weather Review 126 (1998), 1719–1724.
M.D. Butala, R.A. Frazin, Y. Chen, F. Kamalabadi: Tomographic imaging of dynamic objects with the ensemble Kalman filter. IEEE Trans. Image Proces. 18 (2009), 1573–1587.
G. Evensen: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin, 2007.
R.A. Frazin, M.D. Butala, A. Kemball, F. Kamalabadi: Time-dependent reconstruction of nonstationary objects with tomographic or interferometric measurements. Astrophys. J. 635 (2005), L197–L200.
R. Furrer, T. Bengtsson: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98 (2007), 227–255.
E. Kalnay: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, 2003.
F. Le Gland, V. Monbet, V.-D. Tran: Large Sample Asymptotics for the Ensemble Kalman Filter. Research Report RR-7014, INRIA, August 2009. http://hal.inria.fr/inria-00409060/en/.
J. Li, D. Xiu: On numerical properties of the ensemble Kalman filter for data assimilation. Comput. Methods Appl. Mech. Eng. 197 (2008), 3574–3583.
J. Mandel, J.D. Beezley: An ensemble Kalman-particle predictor-corrector filter for non-Gaussian data assimilation. ICCS 2009. Lecture Notes in Computer Science, Vol. 5545 (G. Allen, J. Nabrzyski, E. Seidel, G.D. van Albada, J. Dongarra, P.M.A. Sloot, eds.). Springer, 2009, pp. 470–478.
J. Mandel, L. Cobb, J.D. Beezley: On the convergence of the ensemble Kalman filter. University of Colorado Denver CCM Report 278, January 2009. http://www.arXiv.org/abs/0901.2951.
M.K. Tippett, J. L. Anderson, C.H. Bishop, T.M. Hamill, J. S. Whitaker: Ensemble square root filters. Monthly Weather Review 131 (2003), 1485–1490.
A.W. Van der Vaart: Asymptotic Statistics. Cambridge University Press, Cambridge, 2000.
A. Vodacek, Y. Li, A. J. Garrett: Remote sensing data assimilation in environmental models. In: AIPR ′08: Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop. IEEE Computer Society, Washington, 2008, pp. 1–5.