On the convergence of double integrals and a generalized version of Fubini’s theorem on successive integration
Tóm tắt
Let the function
$$f: \overline {\mathbb{R}}_+^2 \rightarrow \mathbb{C}$$
be such that
$$f \in L_{loc}^1(\overline{\mathbb{R}}_+^2)$$
. We investigate the convergence behavior of the double integral
$$(*) \;\;\;\;\;\;\;\;\;\;\; \int_{0}^{A} \int_{0}^{B} f(u, v)dudv \;\;\; as \;\; A,B \rightarrow \infty$$
where A and B tend to infinity independently of one another, while using two notions of convergence: that in Pringsheim’s sense and that in the regular sense. Our main result is that if the double integral (.) converges in the regular sense, then the finite limits
$$\lim_{y \rightarrow \infty} \int_{0}^{A} \left(\int_{0}^{y} f(u, v)dv \right) du =: I_1(A) \;and \lim_{x \rightarrow \infty} \int_{0}^{B} \left( \int_{0}^{x} f(u, v)du \right) dv =: I_2(B)$$
exist uniformly in 0 < A, B < ∞, respectively, and
$$\lim_{A \rightarrow \infty} I_1(A) = \lim {_{B\rightarrow \infty}} I_2(B) = \lim_{A,B \rightarrow \infty} \int_{0}^{A} \int_{0}^{B} f(u, v)dudv.$$
This can be considered as a generalized version of Fubini’s theorem on successive integration when
$$f \in L_{loc}^1(\overline{\mathbb{R}}_+^2)$$
, but
$$f \notin L^1(\overline{\mathbb{R}}_+^2)$$
.
Tài liệu tham khảo
G. H. Hardy, On the convergence of certain multiple series, Proc. Cambridge Philo. Soc., 19 (1916–1919), 86–95.
P. Kórus and F. Móricz, On the uniform convergence of double sine series, Studia Math., 193 (2009), 79–97.
P. Kórus and F. Móricz, Generalizations to monotonicity for uniform convergence of double sine integrals over \(\overline{\mathbb{R}}_+^2\), Studia Math., 201 (2010), 287–304; Addendum, http://arxiv.org/abs/1206.6188.
F. Móricz, On the convergence in a restricted sense of multiple series, Analysis Math., 5 (1979), 135–147.
F. Móricz, On the uniform convergence of double sine integrals over \(\overline{\mathbb{R}}_+^2\), Analysis, 31 (2011), 191–204.
A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289–321.
F. Riesz et B. Sz.-Nagy, Lecons d’analyse fonctionelle, Gauthier-Villars, Paris, 1955.
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
A. Zygmund, Trigonometric series, Vol. II, Cambridge Univ. Press, 1959.
F. Móricz, On the regular convergence of multiple integrals of locally Lebesgue integrable functions over \(\overline{\mathbb{R}}_+^m\), C.R. Acad. Sci. Paris, Ser. I, 350 (2012), 459–464.
