On the convergence of compact difference schemes

Mathematical Models and Computer Simulations - Tập 1 Số 1 - Trang 91-104 - 2009
Б. В. Рогов1, M. N. Mikhailovskaya1
1Institute of Mathematical Modeling, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. I. Tolstykh, Compact Difference Schemes and Their Application to Aerohydrodynamic Problems (Nauka, Moscow, 1990) [in Russian].

B. Cockburn and C. W. Shu, “Nonlinearly Stable Compact Schemes for Shock Calculations,” SIAM J. Numer. Anal. 31, 607–627 (1994).

A. I. Tolstykh and D. A. Shirobokov, “Difference Schemes with Fifth-Order Compact Approximations for Three-Dimensional Viscous Gas Flows,” Zh. Vychisl. Mat. Mat. Fiz. 36, 71–85 (1996).

N. A. Adams and K. Sharif, “A High-Resolution Compact-ENO Scheme for Shock-Turbulence Interaction Problems,” J. Comput. Phys. 127, 27–51 (1996).

A. I. Tolstykh and M. V. Lipavskii, “On Performance of Methods with Third- and Fifth-Order Compact Unwind Differencing,” J. Comput. Phys. 140, 205–232.

S. F. Radwan, “On the Fourth-Order Accurate Compact ADI Scheme for Solving the Unsteady Nonlinear Coupled Burgers’ Equations,” J. Nonlinear Math. Phys. 6, 13–34 (1999).

M. Y. Shen, Z. B. Zhang, and X. L. Niu, “A New Way for Constructing High Accuracy Shock-Capturing Generalized Compact Difference Schemes,” Comput. Methods Appl. Mech. Eng. 192, 2703–2725 (2003).

S. F. Radwan, “Comparison of Higher-Order Accurate Schemes for Solving the Two-Dimensional Unsteady Burgers’ Equations,” J. Comput. Appl. Math. 174, 383–397 (2005).

N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, and B. V. Rogov, Computations with Quasi-Equidistant Meshes (Fizmatlit, Moscow, 2005) [in Russian].

N. N. Kalitkin and I. V. Ritus, Preprint no. 90, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 1981).

E. Yu. Dnestrovskaya, N. N. Kalitkin, and I. V. Ritus, “Solution of Partial Differential Equations Using Schemes with Complex Coefficients,” Mat. Model. 3(9), 114–127 (1991).

A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists (Fizmatlit, Moscow, 2001; Chapman & Hall/CRC, Boca Raton, FL, 2002).

N. N. Kalitkin, B. V. Rogov, and I. A. Sokolova, “Two-stages Marching Method for Calculation of Viscous Flow Through Laval Nozzle,” Mat. Model. 11(7), 95–117 (1999).

N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996; Mir, Moscow, 1999).

L. M. Skvortsov, “Diagonally Implicit FSAL Runge-Kutta Methods for Stiff and Differential-Algebraic Systems,” Mat. Model. 14(2), 3–17 (2002).

N. V. Shirobokov, “Diagonally Implicit Runge-Kutta Methods,” Zh. Vychisl. Mat. Mat. Fiz. 42, 1013–1018 (2002) [Comput. Math. Math. Phys. 42, 974–979 (2002)].

N. V. Shirobokov, “Evolution Equation Splitting on the Basis of Diagonal Implicit Methods,” Zh. Vychisl. Mat. Mat. Fiz. 43, 1402–1408 (2003) [Comput. Math. Math. Phys. 43, 1348–1354 (2003)].

A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, and A. B. Koryagina, “Rosenbrock Schemes with Complex Coefficients for Stiff and Differential Algebraic Systems,” Zh. Vychisl. Mat. Mat. Fiz. 46, 1392–1414 (2006) [Comput. Math. Math. Phys. 46, 1320–1340 (2006)].

J. C. Butcher, “Coefficients for Study of Runge-Kutta Integration Processes,” J. Austral. Math. Soc. 3, 185–201(1963).

N. N. Kalitkin and L. V. Kuz’mina, Preprint Nos. 80, 90 IPM RAN (Keldysh Institute of Applied Mathematics, SSSR Academy of Sciences, Moscow, 1981).

N. N. Kalitkin and S. L. Panchenko, “Optimal Schemes for Stiff Nonautonomous Systems,” Mat. Model. 11(6), 52–81 (1999).

Modern Numerical Methods for Ordinary Differential Equations, Ed. by G. Hall and J. M. Watt (Clarendon, Oxford, 1976; Mir, Moscow, 1979).

E. Hairer, S. P. Nörsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems (Springer-Verlag, Berlin, 1987; Mir, Moscow, 1990).

E. A. Alshina, E. M. Zaks, and N. N. Kalitkin, “Optimal Parameters for Low-Order Explicit Runge-Kutta Schemes,” Mat. Model. 18(2), 61–71 (2006).