On the contribution of Rossby waves driven by surface buoyancy fluxes to low-frequency North Atlantic steric sea surface height variations

Atmospheric and Oceanic Science Letters - Tập 15 - Trang 100153 - 2022
Peter Kowalski1
1Department of Physics, Imperial College, London, UK

Tài liệu tham khảo

Buckley, 2019, Predictability of North Atlantic sea surface temperature and upper ocean heat content, J. Clim., 32, 3005, 10.1175/JCLI-D-18-0509.1 Buckley, 2014, Low-frequency SST and upper-ocean heat content variability in the North Atlantic, J. Clim., 27, 4996, 10.1175/JCLI-D-13-00316.1 Cababnes, 2006, Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean, J. Phys. Oceanogr., 36 Calafat, 2018, Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves, Nat. Commun., 9 Capotondi, 2001, Rossby waves in the tropical North Pacific and their role in decadal thermocline variability, J. Phys. Oceanogr., 31, 3496, 10.1175/1520-0485(2002)031<3496:RWITTN>2.0.CO;2 Chelton, 1996, Global observations of oceanic Rossby waves, Science, 272, 234, 10.1126/science.272.5259.234 Feucher, 2016, Mean structure of the North Atlantic subtropical permanent pycnocline from in situ observations, J. Atmos. Ocean. Technol., 33, 1285, 10.1175/JTECH-D-15-0192.1 Forget, 2016 Forget, 2015, The partition of regional sea level variability, Prog. Oceanogr., 137, 173, 10.1016/j.pocean.2015.06.002 Fu, 2002, Low-frequency variability of the North Pacific Ocean: The roles of boundary and wind-driven Rossby waves, J. Geophys. Res., 107, 3220 Klocker, 2014, Advection of eddies by depth-mean flow, Geophys. Res. Lett., 41, 3517, 10.1002/2014GL060001 Lacasce, 2004, The instability of Rossby basin modes and the oceanic eddy field, J. Phys. Oceanogr, 34, 2027, 10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2 Liang, 2017, Change of the global ocean vertical heat transport over 1993-2010, J. Clim., 30, 5319, 10.1175/JCLI-D-16-0569.1 Osychny, 2004, Properties of rossby waves in the North Atlantic estimated from satellite data, J. Phys. Oceanogr., 34, 61, 10.1175/1520-0485(2004)034<0061:PORWIT>2.0.CO;2 Piecuch, 2011, Mechanisms of interannual steric sea level variability, Geophys. Res. Lett., 38, L15605, 10.1029/2011GL048440 Piecuch, 2012, Buoyancy-driven interannual sea level changes in the tropical South Atlantic, J. Phys. Oceanogr., 43, 533, 10.1175/JPO-D-12-093.1 Polkova, 2015, Predictive skill for regional interannual steric sea level and mechanisms for predictability, J. Clim., 28, 7407, 10.1175/JCLI-D-14-00811.1 Samelson, 2010, An effective-beta vector for linear planetary waves on a weak mean flow, Ocean Model., 32, 170, 10.1016/j.ocemod.2010.01.006 Schneider, N., Miller, A.J., 2001. Predicting western North Pacific Ocean climate. J. Clim. 14, 3997–4002. Sturges, 1998, Decadal wind forcing of the North Atlantic subtropical gyre, J. Phys. Oceanogr., 28, 659, 10.1175/1520-0485(1998)028<0659:DWFOTN>2.0.CO;2 Tulloch, 2009, Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence, J. Geophys. Res., 114, C02005 Wunsch, 2007, Practical global oceanic state estimate, Physica D, 230, 197, 10.1016/j.physd.2006.09.040 Zhang, 2016, The role of heating, winds, and topography on sea level changes in the North Atlantic, J. Geophys. Res. Oceans., 121, 2887, 10.1002/2015JC011492 Zhang, 2010, Predicting North Atlantic sea surface temperature variability on the basis of the first-mode baroclinic Rossby wave model, J. Geophys. Res., 115, C09030