Về đồng cấu đồng sinh của không gian moduli Losev–Manin

manuscripta mathematica - Tập 144 - Trang 241-252 - 2013
Jonas Bergström1, Satoshi Minabe2
1Matematiska institutionen, Stockholms Universitet, Stockholm, Sweden
2Department of Mathematics, Tokyo Denki University, Tokyo, Japan

Tóm tắt

Chúng tôi xác định đồng cấu đồng sinh của không gian moduli Losev–Manin $${\overline{M}_{0, 2 | n}}$$ của các đường cong loại không gốc có điểm đánh dấu dưới dạng đại diện của tích các nhóm đối xứng $${\mathbb{S}_2 \times \mathbb{S}_n}$$.

Từ khóa

#Losev–Manin #không gian moduli #đồng cấu đồng sinh #đường cong loại không gốc #nhóm đối xứng

Tài liệu tham khảo

Batyrev V., Blume M.: The functor of toric varieties associated with Weyl chambers and Losev–Manin moduli spaces. Tohoku Math. J. (2) 63(4), 581–604 (2011) Dolgachev I., Lunts V.: A character formula for the representation of a Weyl group in the cohomology of the associated toric variety. J. Algebra 168(3), 741–772 (1994) Hassett B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003) Kapranov M.M.: Chow quotients of Grassmannians. I. Adv. Sov. Math. 16, 29–110 (1993) Lehrer G.I.: Rational points and Coxeter group actions on the cohomology of toric varieties. Ann. Inst. Fourier (Grenoble) 58(2), 671–688 (2008) Losev A., Manin Y.: New moduli spaces of pointed curves and pencils of flat connections. Mich. Math. J. 48, 443–472 (2000) Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2 ed, p. x+475. The Clarendon Press, Oxford University Press, New York (1995) Marian A., Oprea D., Pandharipande R.: The moduli space of stable quotients. Geom. Topol. 15, 1651–1706 (2011) Procesi, C.: The toric variety associated to Weyl chambers. In: Mots, Lang. Raison. Calc., Hermés, Paris, pp. 153–161 (1990) Shadrin S., Zvonkine D.: A group action on Losev–Manin cohomological field theories. Ann. Inst. Fourier (Grenoble) 61(7), 2719–2743 (2011) Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph theory and its applications: East and West (Jinan, 1986), vol. 576, pp. 500–535. New York Acad. Sci. New York (1989) Stembridge J.R.: Some permutation representations of Weyl groups associated with the cohomology of toric varieties. Adv. Math. 106(2), 244–301 (1994)