On the classification of visual patterns: Systems analysis using detection experiments

Springer Science and Business Media LLC - Tập 25 - Trang 121-130 - 1977
M. Fansa1, W. v. Seelen1
1Arbeitsgruppe III (Biophysik), Institut für Zoologie der Johannes-Gutenberg-Universität, Mainz, Germany

Tóm tắt

Behavioral experiments are indispensable for the analysis of biological systems for cognition and recognition. When these are carried out as detection experiments three types of description can be used for the problem of visual pattern recognition which allow conclusions to be drawn on the operating function of the system. Provided that the signals to be recognized have additive noise superimposed on them, system description is possible: 1. on the basis on the probabilities of recognition and of mix-up,—2. through the analysis of the transformation of distribution densities of the noise,—3. by means of the measurable distances of the patterns from each other in feature space.-The analysis of the distribution densities shows that the human visual system acts like a linear classifier in the classification of six geometrical patterns. The independence of the classification from intensity as well as the human reaction to alteration in the power spectrum of the noise support this result. Simulation experiments on a computer show the efficacy of various biological relevant parameters for the linear classification and suggest that a narrow band and probably feature specific filtering precedes the classification.

Tài liệu tham khảo

Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1969) Fu, K.S.: Digital pattern recognition. Berlin-Heidelberg-New York: Springer 1976 Hoffmann, K.P., Lippert, P., v. Seelen, W.: Detection of patterns in stationary visual noise by normal and monoculary deprived cats. EBBS 8th Anual Meeting. Copenhagen (1976) Jung, R.: Handbook of sensory physiology, central visual information B, Berlin-Heidelberg-New York: Springer 1973 Kroschel, K.: Statistische Nachrichtentheorie, 1. Teil, Berlin-Heidelberg-New York: Springer 1973 Niemann, H., Reinig, H.J.: Experimente zur binären Klassifikation von Mustern durch den Menschen. Kybernetik 11, 50–60 (1972) Niemann, H.: Methoden der Mustererkennung. Frankfurt: Akademische Verlagsanstalt 1974 Schmidt, R.F.: Grundriß der Sinnesphysiologie. Berlin-Heidelberg-New York: Springer 1973 v. Seelen, W.: Methoden zum Vergeich des Leistungsvermögens biologischer und technischer Systeme, Kybernetik 10, 1–16 (1972) v. Seelen, W., Hoffmann, K.-P.: Analysis of neuronal networks in the visual system of the cat using statistical signals. Biol. Cybernetics 22, 7–20 (1976) Swets, J.A.: Signal detection and recognition by human observers. New York: John Wiley & Sons 1964 Van Trees, H.L.: Detection, estimation and modulation theory. New York-London-Sydney: John Wiley and Sons 1968