On the classical Dirichlet problem in the plane with rational data
Tóm tắt
Từ khóa
Tài liệu tham khảo
[B92] S. R. Bell,The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC Press, Boca Raton, 1992.
[B95] S. R. Bell,Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J.44 (1995), 1337–1369.
[CS01] M. Chamberland and D. Siegel,Polynomial solutions to Dirichlet problems, Proc. Amer. Math. Soc.129 (2001), 211–217.
[D74] P. Davis,The Schwarz Function and its Applications, Mathematical Association of America, Buffalo, NY, 1974.
[E92] P. Ebenfelt,Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem, Complex Variables Theory Appl.20 (1992), 75–92.
[EKS05] P. Ebenfelt, D. Khavinson and H. S. Shapiro,Algebraic aspects of the Dirichlet problem, inQuadrature Domains and Their Applications, Bikhäuser, Basel, 2005, pp. 151–172.
[EV05] P. Ebenfelt and M. Viscardi,On the solution of the Dirichlet problem with rational holomorphic boundary data, Comput. Methods Funct. Theory5 (2005), 445–457.
[EV06] P. Ebenfelt and M. Viscardi,An explicit solution to the Dirichlet problem with rational holomorphic data in terms of Riemann mapping, Comput. Methods Funct. Theory, to appear.
[Ev98] L. C. Evans,Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998.
[F37] K. Friedrichs,On certain inequalities for analytic functions and for functions of two variables, Trans. Amer. Math. Soc.41 (1937), 321–364.
[HS94] L. J. Hansen and H. S. Shapiro,Functional equations and harmonic extensions, Complex Variables Theory Appl.24 (1994), 121–129.
[H72] L. I. Hedberg,Approximation in the mean by analytic functions, Trans. Amer. Math. Soc.163 (1972), 157–171.
[KhD91] D. Khavinson,Singularities of harmonic functions in C n , inSeveral Complex Variables and Complex Geometry, Part 3, (Santa Cruz, CA, 1989), Amer Math. Soc., Providence, RI, 1991, pp. 207–217.
[KS92] D. Khavinson and H. S. Shapiro,Dirichlet’s problem when the data is an entire function, Bull. London Math. Soc.24 (1992), 456–468.
[KhS97] S. Ya. Khavinson,Best Approximationby Linear Superpositions (Approximate Nomography), Amer. Math. Soc., Providence, RI, 1997.
[N52] Z. Nehari,Conformal Mapping, McGraw-Hill, New York, NY, 1952.
[R05] H. Render,Real Bargmann Spaces, Fischer pairs and sets of uniqueness for polyharmonic functions, preprint, 2005.
[S80] H. S. Shapiro,On some Fourier and distribution-theoreti methods in approximation theory, inApproximation Theory III, (E. W. Cheney, ed.) Academic Press, 1980, pp. 87–124.
[S81] H. S. Shapiro,Some inequalities for analytic functions integrable over a plane domain, inApproximation and Function Spaces, Gdansk, 1979, North Holland, 1981, pp. 645–666.
[S89] H. S. Shapiro,An algebraic theorem of E. Fischer, and the homorphic Goursat problem, Bull. London Math. Soc.21 (1989), 513–537.
[S92] H. S. Shapiro,The Schwarz Function and its Generalization to Higher Dimensions, Wiley-Interscience, 1992.