On the classical Dirichlet problem in the plane with rational data

Journal d'Analyse Mathematique - Tập 100 Số 1 - Trang 157-190 - 2006
Steven R. Bell1, Peter Ebenfelt2, Dmitry Khavinson3, Harold T. Shapiro4
1Department of Mathematics Purdue University West Lafayette USA
2Department of Mathematics, University of California San Diego, La Jolla, USA
3Department of Mathematics, University of Arkansas, Fayetteville, USA
4Department of Mathematics, Royal Instttute of Technology, Stockholm, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

[AS60] L. V. Ahlfors and L. Sario,Riemann Surfaces, Princeton Univ. Press, Princeton, NJ, 1960.

[B92] S. R. Bell,The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC Press, Boca Raton, 1992.

[B95] S. R. Bell,Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J.44 (1995), 1337–1369.

[CS01] M. Chamberland and D. Siegel,Polynomial solutions to Dirichlet problems, Proc. Amer. Math. Soc.129 (2001), 211–217.

[D74] P. Davis,The Schwarz Function and its Applications, Mathematical Association of America, Buffalo, NY, 1974.

[E92] P. Ebenfelt,Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem, Complex Variables Theory Appl.20 (1992), 75–92.

[EKS05] P. Ebenfelt, D. Khavinson and H. S. Shapiro,Algebraic aspects of the Dirichlet problem, inQuadrature Domains and Their Applications, Bikhäuser, Basel, 2005, pp. 151–172.

[EV05] P. Ebenfelt and M. Viscardi,On the solution of the Dirichlet problem with rational holomorphic boundary data, Comput. Methods Funct. Theory5 (2005), 445–457.

[EV06] P. Ebenfelt and M. Viscardi,An explicit solution to the Dirichlet problem with rational holomorphic data in terms of Riemann mapping, Comput. Methods Funct. Theory, to appear.

[Ev98] L. C. Evans,Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998.

[FK80] H. M. Farkas and I. Kra,Riemann Surfaces, Springer-Verlag, New York, NY, 1980.

[F37] K. Friedrichs,On certain inequalities for analytic functions and for functions of two variables, Trans. Amer. Math. Soc.41 (1937), 321–364.

[HS94] L. J. Hansen and H. S. Shapiro,Functional equations and harmonic extensions, Complex Variables Theory Appl.24 (1994), 121–129.

[H72] L. I. Hedberg,Approximation in the mean by analytic functions, Trans. Amer. Math. Soc.163 (1972), 157–171.

[KhD91] D. Khavinson,Singularities of harmonic functions in C n , inSeveral Complex Variables and Complex Geometry, Part 3, (Santa Cruz, CA, 1989), Amer Math. Soc., Providence, RI, 1991, pp. 207–217.

[KS92] D. Khavinson and H. S. Shapiro,Dirichlet’s problem when the data is an entire function, Bull. London Math. Soc.24 (1992), 456–468.

[KhS97] S. Ya. Khavinson,Best Approximationby Linear Superpositions (Approximate Nomography), Amer. Math. Soc., Providence, RI, 1997.

[N52] Z. Nehari,Conformal Mapping, McGraw-Hill, New York, NY, 1952.

[R05] H. Render,Real Bargmann Spaces, Fischer pairs and sets of uniqueness for polyharmonic functions, preprint, 2005.

[S80] H. S. Shapiro,On some Fourier and distribution-theoreti methods in approximation theory, inApproximation Theory III, (E. W. Cheney, ed.) Academic Press, 1980, pp. 87–124.

[S81] H. S. Shapiro,Some inequalities for analytic functions integrable over a plane domain, inApproximation and Function Spaces, Gdansk, 1979, North Holland, 1981, pp. 645–666.

[S89] H. S. Shapiro,An algebraic theorem of E. Fischer, and the homorphic Goursat problem, Bull. London Math. Soc.21 (1989), 513–537.

[S92] H. S. Shapiro,The Schwarz Function and its Generalization to Higher Dimensions, Wiley-Interscience, 1992.