On the classes of functions of generalized bounded variation
Tóm tắt
The properties of the class of functions of generalized bounded variation are studied. The “anomaly” feature of this class is revealed. There is the notation of absolute continuity with respect to
$$((p_n), \phi )$$
and it’s connection with the ordinary absolute continuity is investigated. The problems of approximation by Steklov’s functions and singular integrals are studied.
Tài liệu tham khảo
Akhobadze, T.: Function of generalized Wiener classes \(BV(p(n)\rightarrow \infty, \phi )\) and their Fourier coefficients. Georgian Math. J. 7, 401–416 (2000)
Akhobadze, T.: A generalization of bounded variation. Acta Math. Hung. 97, 223–256 (2002)
Chanturia, Z.: The modulus of variation of a function and its application in the theory of Fourier series. Dokl. Akad. Nauk SSSR 214, 63–66 (1974)
Jordan, C.: Sur la séries de Fourier. C. R. Acad. Sci. Paris 92, 228–230 (1881)
Kita, H., Yoneda, K.: A generalization of bounded variation. Acta Math. Hung. 56, 229–238 (1990)
Love, E.R.: A generalization of absolute continuity. J. Lond. Math. Soc. 26, 1–13 (1951)
Musielak, J., Orlicz, W.: On generalized variations (I). Stud. Math. 18, 11–41 (1959)
Waterman, D.: On convergence of Fourier series of functions of generalized bounded variation. Stud. Math. 44, 107–117 (1972)
Wiener, N.: The quadratic variation of a function and its Fourier coefficients. J. Math. Phys. 3, 72–94 (1924)
Young, L.: Sur une généralization de la notion de variation de poissance p-iéme bornee au sen de N. Wiener, et sur la convergence des séries de Fourier. C. R. Acad. Sci. Paris 204, 470–472 (1937)
Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, p. 310. Springer, New York (2012)