On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts
Tài liệu tham khảo
Basu, 1991, Major element, REE, and Pb, Nd and Sr isotopic geochemistry of cenozoic volcanic-rocks of Eastern China - implications for their origin from suboceanic-type mantle reservoirs, Earth Planet. Sci. Lett., 105, 149, 10.1016/0012-821X(91)90127-4
Beattie, 1991, Partition-coefficients for olivine-melt and ortho-pyroxene-melt systems, Contrib. Mineral. Petrol., 109, 212, 10.1007/BF00306480
Chen, 2007, Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China, Lithos, 96, 108, 10.1016/j.lithos.2006.09.015
Chu, 2009, Temporal evolution of the lithospheric mantle beneath the eastern North China Craton, J. Petrol., 50, 1857, 10.1093/petrology/egp055
Chu, 2013, Source of highly potassic basalts in northeast China: evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry, Chem. Geol., 357, 52, 10.1016/j.chemgeo.2013.08.007
Costa, 2005, Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine, Geology, 33, 837, 10.1130/G21675.1
Costa, 2008, Time scales of magmatic processes from modeling the zoning patterns of crystals, Minerals, Inclusions and Volcanic Processes, 69, 545, 10.1515/9781501508486-015
Dasgupta, 2006, Immiscible transition from carbonate-rich to silicate-rich melts in the 3GPa melting interval of eclogite plus CO2 and genesis of silica-undersaturated ocean island lavas, J. Petrol., 47, 647, 10.1093/petrology/egi088
Dasgupta, 2007, Partial melting experiments of peridotite CO2 at 3GPa and genesis of alkalic ocean island basalts, J. Petrol., 48, 2093, 10.1093/petrology/egm053
Dasgupta, 2013, Carbon-dioxide-rich silicate melt in the Earth/'s upper mantle, Nature, 493, 211, 10.1038/nature11731
Davis, 2013, The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3GPa and the origin of basalts from enriched mantle, Contrib. Mineral. Petrol., 166, 1029, 10.1007/s00410-013-0907-0
Davis, 2011, The composition of the incipient partial melt of garnet peridotite at 3GPa and the origin of OIB, Earth Planet. Sci. Lett., 308, 380, 10.1016/j.epsl.2011.06.008
Davis, 2013, Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3GPa, Geochim. Cosmochim. Acta, 104, 232, 10.1016/j.gca.2012.11.009
De Hoog, 2010, Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 270, 196, 10.1016/j.chemgeo.2009.11.017
Downes, 2007, Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa, Lithos, 99, 1, 10.1016/j.lithos.2007.05.006
Erdmann, 2014, Characteristic textures of recrystallized, peritectic, and primary magmatic olivine in experimental samples and natural volcanic rocks, J. Petrol., 55, 2377, 10.1093/petrology/egu060
Falloon, 2000, Melting of refractory mantle at 1 center dot 5, 2 and 2 center dot 5GPa under, anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting, J. Petrol., 41, 257, 10.1093/petrology/41.2.257
Falloon, 1988, Anhydrous partial melting of a fertile and depleted peridotite from 2-Kb to 30-Kb and application to basalt petrogenesis, J. Petrol., 29, 1257, 10.1093/petrology/29.6.1257
Fan, 1991, The Cenozoic basaltic rocks of eastern China - petrology and chemical-composition, J. Petrol., 32, 765, 10.1093/petrology/32.4.765
Foley, 2013, Minor and trace elements in olivines as probes into early igneous and mantle melting processes, Earth Planet. Sci. Lett., 363, 181, 10.1016/j.epsl.2012.11.025
Frey, 1978, Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data, J. Petrol., 19, 463, 10.1093/petrology/19.3.463
Gao, 2008, Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton, Earth Planet. Sci. Lett., 270, 41, 10.1016/j.epsl.2008.03.008
Ghiorso, 2002, The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3GPa, Geochem. Geophys. Geosyst., 3, 10.1029/2001GC000217
Grove, 2013, Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite, Contrib. Mineral. Petrol., 166, 887, 10.1007/s00410-013-0899-9
Guo, 2014, Lithosphere thinning beneath west North China Craton: evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts, Lithos, 202–203, 37, 10.1016/j.lithos.2014.04.024
Guo, 2016, The origin of Cenozoic basalts from central Inner Mongolia, East China: the consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone, Lithos, 240–243, 104, 10.1016/j.lithos.2015.11.010
Hart, 1978, Nickel partitioning between olivine and silicate melt, Earth Planet. Sci. Lett., 40, 203, 10.1016/0012-821X(78)90091-2
Hauri, 1996, Major-element variability in the Hawaiian mantle plume, Nature, 382, 415, 10.1038/382415a0
Herzberg, 2006, Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano, Nature, 444, 605, 10.1038/nature05254
Herzberg, 2011, Identification of source lithology in the Hawaiian and Canary Islands: implications for origins, J. Petrol., 52, 113, 10.1093/petrology/egq075
Herzberg, 2008, Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation, Geochem. Geophys. Geosyst., 9, Q09001, 10.1029/2008GC002057
Herzberg, 2002, Plume-associated ultramafic magmas of phanerozoic age, J. Petrol., 43, 1857, 10.1093/petrology/43.10.1857
Herzberg, 2013, Nickel and helium evidence for melt above the core-mantle boundary, Nature, 493, 393, 10.1038/nature11771
Herzberg, 2014, Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle, Earth Planet. Sci. Lett., 396, 97, 10.1016/j.epsl.2014.03.065
Hirose, 1997, Partial melt compositions of carbonated peridotite at 3GPa and role of CO2 in alkali-basalt magma generation, Geophys. Res. Lett., 24, 2837, 10.1029/97GL02956
Hirose, 1994, A new experimental approach for incremental batch melting of peridotite at 1.5GPa, Geophys. Res. Lett., 21, 2139, 10.1029/94GL01792
Hirose, 1993, Partial melting of dry peridotites at high-pressures - determination of compositions of melts segregated from peridotite using aggregates of diamond, Earth Planet. Sci. Lett., 114, 477, 10.1016/0012-821X(93)90077-M
Hirose, 1998, The effect of melt segregation on polybaric mantle melting: estimation from the incremental melting experiments, Phys. Earth Planet. Inter., 107, 111, 10.1016/S0031-9201(97)00129-5
Hirschmann, 2000, Mantle solidus: experimental constraints and the effects of peridotite composition, Geochem. Geophys. Geosyst., 1, 10.1029/2000GC000070
Hirschmann, 2003, Alkalic magmas generated by partial melting of garnet pyroxenite, Geology, 31, 481, 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
Hong, 2013, Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene-Early Miocene Xindian basalts, Chifeng area, North China Craton, Contrib. Mineral. Petrol., 165, 305, 10.1007/s00410-012-0810-0
Huang, 2013, Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea, Contrib. Mineral. Petrol., 165, 437, 10.1007/s00410-012-0816-7
Humayun, 2004, Geochemical evidence for excess iron in the mantle beneath Hawaii, Science, 306, 91, 10.1126/science.1101050
Kamenetsky, 2006, Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas, Chem. Geol., 233, 346, 10.1016/j.chemgeo.2006.03.010
Kogiso, 1998, Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts, Earth Planet. Sci. Lett., 162, 45, 10.1016/S0012-821X(98)00156-3
Kogiso, 2003, High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts, Earth Planet. Sci. Lett., 216, 603, 10.1016/S0012-821X(03)00538-7
Kogiso, 2004, High-pressure partial melting of mafic lithologies in the mantle, J. Petrol., 45, 2407, 10.1093/petrology/egh057
Köhler, 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60kb with applications, Geochim. Cosmochim. Acta, 54, 2375, 10.1016/0016-7037(90)90226-B
Kushiro, 1996, Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond, 109
Lambart, 2009, An experimental study of pyroxenite partial melts at 1 and 1.5GPa: implications for the major-element composition of Mid-Ocean Ridge Basalts, Earth Planet. Sci. Lett., 288, 335, 10.1016/j.epsl.2009.09.038
Lambart, 2012, Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamic and experimental constraints, J. Petrol., 53, 451, 10.1093/petrology/egr068
Lambart, 2013, Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints, Lithos, 160–161, 14, 10.1016/j.lithos.2012.11.018
Laporte, 2014, Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites, Earth Planet. Sci. Lett., 404, 319, 10.1016/j.epsl.2014.08.002
Le Roux, 2010, Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth's mantle, Geochim. Cosmochim. Acta, 74, 2779, 10.1016/j.gca.2010.02.004
Le Roux, 2011, Mineralogical heterogeneities in the Earth's mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting, Earth Planet. Sci. Lett., 307, 395, 10.1016/j.epsl.2011.05.014
Lee, 2004, Are Earth's core and mantle on speaking terms?, Science, 306, 64, 10.1126/science.1102976
Li, 2010, The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling, Chem. Geol., 275, 99, 10.1016/j.chemgeo.2010.05.001
Li, 2012, Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex, Alaska, Mineral. Petrol., 104, 147, 10.1007/s00710-011-0188-0
Liu, 2008, Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton, Geochim. Cosmochim. Acta, 72, 2349, 10.1016/j.gca.2008.02.018
Liu, 2015, Petrogenesis of Late Cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines, Geochim. Cosmochim. Acta, 152, 89, 10.1016/j.gca.2014.12.023
Mallik, 2012, Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts, Earth Planet. Sci. Lett., 329–330, 97, 10.1016/j.epsl.2012.02.007
Matzen, 2013, The temperature and pressure dependence of nickel partitioning between olivine and silicate melt, J. Petrol., 54, 2521, 10.1093/petrology/egt055
McDonough, 1995, The composition of the Earth, Chem. Geol., 120, 223, 10.1016/0009-2541(94)00140-4
Mckenzie, 1988, The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625, 10.1093/petrology/29.3.625
Nikulin, 2012, Evidence for two upper mantle sources driving volcanism in Central Kamchatka, Earth Planet. Sci. Lett., 321–322, 14, 10.1016/j.epsl.2011.12.039
Niu, 1997, Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites, J. Petrol., 38, 1047, 10.1093/petroj/38.8.1047
Niu, 2005, Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China, Geol. J. China Univ., 11, 9
Niu, 2003, Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations, J. Geophys. Res. Solid Earth, 108, 2209, 10.1029/2002JB002048
Niu, 2011, The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications, J. Petrol., 52, 1443, 10.1093/petrology/egr030
Pertermann, 2003, Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3GPa, J. Petrol., 44, 2173, 10.1093/petrology/egg074
Pilet, 2008, Metasomatized lithosphere and the origin of alkaline lavas, Science, 320, 916, 10.1126/science.1156563
Prytulak, 2007, TiO2 enrichment in ocean island basalts, Earth Planet. Sci. Lett., 263, 388, 10.1016/j.epsl.2007.09.015
Putirka, 2011, Mineralogy and composition of the oceanic mantle, J. Petrol., 52, 279, 10.1093/petrology/egq080
Qian, 2010, Comparative diffusion coefficients of major and trace elements in olivine at ∼950°C from a xenocryst included in dioritic magma, Geology, 38, 331, 10.1130/G30788.1
Qian, 2015, Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: implications for petrogenesis and mantle source, Chem. Geol., 401, 111, 10.1016/j.chemgeo.2015.02.018
Rudnick, 2004, Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton, Lithos, 77, 609, 10.1016/j.lithos.2004.03.033
Sakuyama, 2013, Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: constraints from Cenozoic alkaline basalts in eastern China, Chem. Geol., 359, 32, 10.1016/j.chemgeo.2013.09.012
Smith, 1993, Compositional evolution of high-temperature sheared lherzolite PHN 1611, Geochim. Cosmochim. Acta, 57, 605, 10.1016/0016-7037(93)90371-3
Sobolev, 2005, An olivine-free mantle source of Hawaiian shield basalts, Nature, 434, 590, 10.1038/nature03411
Sobolev, 2007, The amount of recycled crust in sources of mantle-derived melts, Science, 316, 412, 10.1126/science. 1138113
Timm, 2009, Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts, J. Petrol., 50, 989, 10.1093/petrology/egp029
Timm, 2010, Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia, Earth Sci. Rev., 98, 38, 10.1016/j.earscirev.2009.10.002
Walter, 1998, Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, J. Petrol., 39, 29, 10.1093/petroj/39.1.29
Wang, 2011, Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China, Lithos, 125, 940, 10.1016/j.lithos.2011.05.007
Wang, 2012, Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?, J. Petrol., 53, 177, 10.1093/petrology/egr061
Wang, 2013, Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics, Earth Planet. Sci. Lett., 377–378, 248, 10.1016/j.epsl.2013.07.003
Wang, 2015, On the significance of temperatures derived from major element and REE based two-pyroxene thermometers for mantle xenoliths from the North China Craton, Lithos, 224–225, 101, 10.1016/j.lithos.2015.01.022
Welsch, 2013, Dendritic crystallization: a single process for all the textures of olivine in basalts?, J. Petrol., 54, 539, 10.1093/petrology/egs077
Witt-Eickschen, 2005, The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite, Chem. Geol., 221, 65, 10.1016/j.chemgeo.2005.04.005
Workman, 2005, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 231, 53, 10.1016/j.epsl.2004.12.005
Xu, 2014, Recycled oceanic crust in the source of 90–40Ma basalts in North and Northeast China: evidence, provenance and significance, Geochim. Cosmochim. Acta, 143, 49, 10.1016/j.gca.2014.04.045
Xu, 2012, Slab–mantle interaction for thinning of cratonic lithospheric mantle in North China: geochemical evidence from Cenozoic continental basalts in central Shandong, Lithos, 146–147, 202, 10.1016/j.lithos.2012.05.019
Xu, 2014, Phenocryst He–Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China, J. Volcanol. Geotherm. Res., 272, 99, 10.1016/j.jvolgeores.2014.01.001
Yang, 2013, Can we identify source lithology of basalt?, Sci. Rep., 3, 1856, 10.1038/srep01856
Zeng, 2010, Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China, Chem. Geol., 273, 35, 10.1016/j.chemgeo.2010.02.009
Zeng, 2011, Crust recycling in the sources of two parallel volcanic chains in Shandong, North China, Earth Planet. Sci. Lett., 302, 359, 10.1016/j.epsl.2010.12.026
Zeng, 2013, Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: the case for mantle xenolith-magma interaction, Geochem. Geophys. Geosyst., 14, 10.1002/ggge.20127
Zhang, 2009, Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China, Lithos, 110, 305, 10.1016/j.lithos.2009.01.006
Zhi, 1990, Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt, Chem. Geol., 88, 1, 10.1016/0009-2541(90)90101-C
Zou, 2000, Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance, Chem. Geol., 171, 33, 10.1016/S0009-2541(00)00243-6