On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts

Earth-Science Reviews - Tập 157 - Trang 18-31 - 2016
Zong-Feng Yang1, Jie Li1, Wen-Fei Liang1, Zhao-Hua Luo1
1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

Tài liệu tham khảo

Basu, 1991, Major element, REE, and Pb, Nd and Sr isotopic geochemistry of cenozoic volcanic-rocks of Eastern China - implications for their origin from suboceanic-type mantle reservoirs, Earth Planet. Sci. Lett., 105, 149, 10.1016/0012-821X(91)90127-4 Beattie, 1991, Partition-coefficients for olivine-melt and ortho-pyroxene-melt systems, Contrib. Mineral. Petrol., 109, 212, 10.1007/BF00306480 Chen, 2007, Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China, Lithos, 96, 108, 10.1016/j.lithos.2006.09.015 Chu, 2009, Temporal evolution of the lithospheric mantle beneath the eastern North China Craton, J. Petrol., 50, 1857, 10.1093/petrology/egp055 Chu, 2013, Source of highly potassic basalts in northeast China: evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry, Chem. Geol., 357, 52, 10.1016/j.chemgeo.2013.08.007 Costa, 2005, Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine, Geology, 33, 837, 10.1130/G21675.1 Costa, 2008, Time scales of magmatic processes from modeling the zoning patterns of crystals, Minerals, Inclusions and Volcanic Processes, 69, 545, 10.1515/9781501508486-015 Dasgupta, 2006, Immiscible transition from carbonate-rich to silicate-rich melts in the 3GPa melting interval of eclogite plus CO2 and genesis of silica-undersaturated ocean island lavas, J. Petrol., 47, 647, 10.1093/petrology/egi088 Dasgupta, 2007, Partial melting experiments of peridotite CO2 at 3GPa and genesis of alkalic ocean island basalts, J. Petrol., 48, 2093, 10.1093/petrology/egm053 Dasgupta, 2013, Carbon-dioxide-rich silicate melt in the Earth/'s upper mantle, Nature, 493, 211, 10.1038/nature11731 Davis, 2013, The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3GPa and the origin of basalts from enriched mantle, Contrib. Mineral. Petrol., 166, 1029, 10.1007/s00410-013-0907-0 Davis, 2011, The composition of the incipient partial melt of garnet peridotite at 3GPa and the origin of OIB, Earth Planet. Sci. Lett., 308, 380, 10.1016/j.epsl.2011.06.008 Davis, 2013, Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3GPa, Geochim. Cosmochim. Acta, 104, 232, 10.1016/j.gca.2012.11.009 De Hoog, 2010, Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 270, 196, 10.1016/j.chemgeo.2009.11.017 Downes, 2007, Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa, Lithos, 99, 1, 10.1016/j.lithos.2007.05.006 Erdmann, 2014, Characteristic textures of recrystallized, peritectic, and primary magmatic olivine in experimental samples and natural volcanic rocks, J. Petrol., 55, 2377, 10.1093/petrology/egu060 Falloon, 2000, Melting of refractory mantle at 1 center dot 5, 2 and 2 center dot 5GPa under, anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting, J. Petrol., 41, 257, 10.1093/petrology/41.2.257 Falloon, 1988, Anhydrous partial melting of a fertile and depleted peridotite from 2-Kb to 30-Kb and application to basalt petrogenesis, J. Petrol., 29, 1257, 10.1093/petrology/29.6.1257 Fan, 1991, The Cenozoic basaltic rocks of eastern China - petrology and chemical-composition, J. Petrol., 32, 765, 10.1093/petrology/32.4.765 Foley, 2013, Minor and trace elements in olivines as probes into early igneous and mantle melting processes, Earth Planet. Sci. Lett., 363, 181, 10.1016/j.epsl.2012.11.025 Frey, 1978, Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data, J. Petrol., 19, 463, 10.1093/petrology/19.3.463 Gao, 2008, Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton, Earth Planet. Sci. Lett., 270, 41, 10.1016/j.epsl.2008.03.008 Ghiorso, 2002, The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3GPa, Geochem. Geophys. Geosyst., 3, 10.1029/2001GC000217 Grove, 2013, Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite, Contrib. Mineral. Petrol., 166, 887, 10.1007/s00410-013-0899-9 Guo, 2014, Lithosphere thinning beneath west North China Craton: evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts, Lithos, 202–203, 37, 10.1016/j.lithos.2014.04.024 Guo, 2016, The origin of Cenozoic basalts from central Inner Mongolia, East China: the consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone, Lithos, 240–243, 104, 10.1016/j.lithos.2015.11.010 Hart, 1978, Nickel partitioning between olivine and silicate melt, Earth Planet. Sci. Lett., 40, 203, 10.1016/0012-821X(78)90091-2 Hauri, 1996, Major-element variability in the Hawaiian mantle plume, Nature, 382, 415, 10.1038/382415a0 Herzberg, 2006, Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano, Nature, 444, 605, 10.1038/nature05254 Herzberg, 2011, Identification of source lithology in the Hawaiian and Canary Islands: implications for origins, J. Petrol., 52, 113, 10.1093/petrology/egq075 Herzberg, 2008, Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation, Geochem. Geophys. Geosyst., 9, Q09001, 10.1029/2008GC002057 Herzberg, 2002, Plume-associated ultramafic magmas of phanerozoic age, J. Petrol., 43, 1857, 10.1093/petrology/43.10.1857 Herzberg, 2013, Nickel and helium evidence for melt above the core-mantle boundary, Nature, 493, 393, 10.1038/nature11771 Herzberg, 2014, Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle, Earth Planet. Sci. Lett., 396, 97, 10.1016/j.epsl.2014.03.065 Hirose, 1997, Partial melt compositions of carbonated peridotite at 3GPa and role of CO2 in alkali-basalt magma generation, Geophys. Res. Lett., 24, 2837, 10.1029/97GL02956 Hirose, 1994, A new experimental approach for incremental batch melting of peridotite at 1.5GPa, Geophys. Res. Lett., 21, 2139, 10.1029/94GL01792 Hirose, 1993, Partial melting of dry peridotites at high-pressures - determination of compositions of melts segregated from peridotite using aggregates of diamond, Earth Planet. Sci. Lett., 114, 477, 10.1016/0012-821X(93)90077-M Hirose, 1998, The effect of melt segregation on polybaric mantle melting: estimation from the incremental melting experiments, Phys. Earth Planet. Inter., 107, 111, 10.1016/S0031-9201(97)00129-5 Hirschmann, 2000, Mantle solidus: experimental constraints and the effects of peridotite composition, Geochem. Geophys. Geosyst., 1, 10.1029/2000GC000070 Hirschmann, 2003, Alkalic magmas generated by partial melting of garnet pyroxenite, Geology, 31, 481, 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 Hong, 2013, Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene-Early Miocene Xindian basalts, Chifeng area, North China Craton, Contrib. Mineral. Petrol., 165, 305, 10.1007/s00410-012-0810-0 Huang, 2013, Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea, Contrib. Mineral. Petrol., 165, 437, 10.1007/s00410-012-0816-7 Humayun, 2004, Geochemical evidence for excess iron in the mantle beneath Hawaii, Science, 306, 91, 10.1126/science.1101050 Kamenetsky, 2006, Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas, Chem. Geol., 233, 346, 10.1016/j.chemgeo.2006.03.010 Kogiso, 1998, Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts, Earth Planet. Sci. Lett., 162, 45, 10.1016/S0012-821X(98)00156-3 Kogiso, 2003, High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts, Earth Planet. Sci. Lett., 216, 603, 10.1016/S0012-821X(03)00538-7 Kogiso, 2004, High-pressure partial melting of mafic lithologies in the mantle, J. Petrol., 45, 2407, 10.1093/petrology/egh057 Köhler, 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60kb with applications, Geochim. Cosmochim. Acta, 54, 2375, 10.1016/0016-7037(90)90226-B Kushiro, 1996, Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond, 109 Lambart, 2009, An experimental study of pyroxenite partial melts at 1 and 1.5GPa: implications for the major-element composition of Mid-Ocean Ridge Basalts, Earth Planet. Sci. Lett., 288, 335, 10.1016/j.epsl.2009.09.038 Lambart, 2012, Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamic and experimental constraints, J. Petrol., 53, 451, 10.1093/petrology/egr068 Lambart, 2013, Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints, Lithos, 160–161, 14, 10.1016/j.lithos.2012.11.018 Laporte, 2014, Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites, Earth Planet. Sci. Lett., 404, 319, 10.1016/j.epsl.2014.08.002 Le Roux, 2010, Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth's mantle, Geochim. Cosmochim. Acta, 74, 2779, 10.1016/j.gca.2010.02.004 Le Roux, 2011, Mineralogical heterogeneities in the Earth's mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting, Earth Planet. Sci. Lett., 307, 395, 10.1016/j.epsl.2011.05.014 Lee, 2004, Are Earth's core and mantle on speaking terms?, Science, 306, 64, 10.1126/science.1102976 Li, 2010, The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling, Chem. Geol., 275, 99, 10.1016/j.chemgeo.2010.05.001 Li, 2012, Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex, Alaska, Mineral. Petrol., 104, 147, 10.1007/s00710-011-0188-0 Liu, 2008, Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton, Geochim. Cosmochim. Acta, 72, 2349, 10.1016/j.gca.2008.02.018 Liu, 2015, Petrogenesis of Late Cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines, Geochim. Cosmochim. Acta, 152, 89, 10.1016/j.gca.2014.12.023 Mallik, 2012, Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts, Earth Planet. Sci. Lett., 329–330, 97, 10.1016/j.epsl.2012.02.007 Matzen, 2013, The temperature and pressure dependence of nickel partitioning between olivine and silicate melt, J. Petrol., 54, 2521, 10.1093/petrology/egt055 McDonough, 1995, The composition of the Earth, Chem. Geol., 120, 223, 10.1016/0009-2541(94)00140-4 Mckenzie, 1988, The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625, 10.1093/petrology/29.3.625 Nikulin, 2012, Evidence for two upper mantle sources driving volcanism in Central Kamchatka, Earth Planet. Sci. Lett., 321–322, 14, 10.1016/j.epsl.2011.12.039 Niu, 1997, Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites, J. Petrol., 38, 1047, 10.1093/petroj/38.8.1047 Niu, 2005, Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China, Geol. J. China Univ., 11, 9 Niu, 2003, Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations, J. Geophys. Res. Solid Earth, 108, 2209, 10.1029/2002JB002048 Niu, 2011, The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications, J. Petrol., 52, 1443, 10.1093/petrology/egr030 Pertermann, 2003, Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3GPa, J. Petrol., 44, 2173, 10.1093/petrology/egg074 Pilet, 2008, Metasomatized lithosphere and the origin of alkaline lavas, Science, 320, 916, 10.1126/science.1156563 Prytulak, 2007, TiO2 enrichment in ocean island basalts, Earth Planet. Sci. Lett., 263, 388, 10.1016/j.epsl.2007.09.015 Putirka, 2011, Mineralogy and composition of the oceanic mantle, J. Petrol., 52, 279, 10.1093/petrology/egq080 Qian, 2010, Comparative diffusion coefficients of major and trace elements in olivine at ∼950°C from a xenocryst included in dioritic magma, Geology, 38, 331, 10.1130/G30788.1 Qian, 2015, Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: implications for petrogenesis and mantle source, Chem. Geol., 401, 111, 10.1016/j.chemgeo.2015.02.018 Rudnick, 2004, Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton, Lithos, 77, 609, 10.1016/j.lithos.2004.03.033 Sakuyama, 2013, Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: constraints from Cenozoic alkaline basalts in eastern China, Chem. Geol., 359, 32, 10.1016/j.chemgeo.2013.09.012 Smith, 1993, Compositional evolution of high-temperature sheared lherzolite PHN 1611, Geochim. Cosmochim. Acta, 57, 605, 10.1016/0016-7037(93)90371-3 Sobolev, 2005, An olivine-free mantle source of Hawaiian shield basalts, Nature, 434, 590, 10.1038/nature03411 Sobolev, 2007, The amount of recycled crust in sources of mantle-derived melts, Science, 316, 412, 10.1126/science. 1138113 Timm, 2009, Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts, J. Petrol., 50, 989, 10.1093/petrology/egp029 Timm, 2010, Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia, Earth Sci. Rev., 98, 38, 10.1016/j.earscirev.2009.10.002 Walter, 1998, Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, J. Petrol., 39, 29, 10.1093/petroj/39.1.29 Wang, 2011, Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China, Lithos, 125, 940, 10.1016/j.lithos.2011.05.007 Wang, 2012, Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?, J. Petrol., 53, 177, 10.1093/petrology/egr061 Wang, 2013, Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics, Earth Planet. Sci. Lett., 377–378, 248, 10.1016/j.epsl.2013.07.003 Wang, 2015, On the significance of temperatures derived from major element and REE based two-pyroxene thermometers for mantle xenoliths from the North China Craton, Lithos, 224–225, 101, 10.1016/j.lithos.2015.01.022 Welsch, 2013, Dendritic crystallization: a single process for all the textures of olivine in basalts?, J. Petrol., 54, 539, 10.1093/petrology/egs077 Witt-Eickschen, 2005, The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite, Chem. Geol., 221, 65, 10.1016/j.chemgeo.2005.04.005 Workman, 2005, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 231, 53, 10.1016/j.epsl.2004.12.005 Xu, 2014, Recycled oceanic crust in the source of 90–40Ma basalts in North and Northeast China: evidence, provenance and significance, Geochim. Cosmochim. Acta, 143, 49, 10.1016/j.gca.2014.04.045 Xu, 2012, Slab–mantle interaction for thinning of cratonic lithospheric mantle in North China: geochemical evidence from Cenozoic continental basalts in central Shandong, Lithos, 146–147, 202, 10.1016/j.lithos.2012.05.019 Xu, 2014, Phenocryst He–Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China, J. Volcanol. Geotherm. Res., 272, 99, 10.1016/j.jvolgeores.2014.01.001 Yang, 2013, Can we identify source lithology of basalt?, Sci. Rep., 3, 1856, 10.1038/srep01856 Zeng, 2010, Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China, Chem. Geol., 273, 35, 10.1016/j.chemgeo.2010.02.009 Zeng, 2011, Crust recycling in the sources of two parallel volcanic chains in Shandong, North China, Earth Planet. Sci. Lett., 302, 359, 10.1016/j.epsl.2010.12.026 Zeng, 2013, Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: the case for mantle xenolith-magma interaction, Geochem. Geophys. Geosyst., 14, 10.1002/ggge.20127 Zhang, 2009, Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China, Lithos, 110, 305, 10.1016/j.lithos.2009.01.006 Zhi, 1990, Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt, Chem. Geol., 88, 1, 10.1016/0009-2541(90)90101-C Zou, 2000, Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance, Chem. Geol., 171, 33, 10.1016/S0009-2541(00)00243-6