On the behavior at infinity of solutions of elliptic systems with a finite energy integral

Archive for Rational Mechanics and Analysis - Tập 99 - Trang 75-89 - 1987
V. A. Kondratiev1, O. A. Oleinik1
1Moscow University, USSR

Tài liệu tham khảo

J. Serrin & H. Weinberger, Isolated singularities of linear elliptic equations. Amer. Math. Journ., 1966, v. 88, Nr. 1, p. 258–272. V. A. Kondratiev & O. A. Oleinik, Sur un probléme de E. Sanchez-Palencia. C. R. Acad. Sci. Paris, 1984, v. 299, ser. 1, Nr. 15, p. 745–748. V. A. Kondratiev & O. A. Oleinik, On periodic in the time solutions of a second order parabolic equation in exterior domains. Vestnik of the Moscow University, Math. Mech., ser. 1, 1985, Nr. 4, p. 38–47. B. R. Wainberg, On solutions of elliptic equations with constant coefficients and a right hand side growing at the infinity. Vestnik of the Moscow University. Math. Mech., ser. 1, 1968, Nr. 1, p. 41–48. Ja. B. Lopatinsky, The behaviour at infinity of solutions of systems of differential equations of the elliptic type. Dokl. AN Ukr. SSR, 1959, Nr. 9, p. 931–935. S. L. Sobolev, Introduction to the theory of cubature formulas. Moscow, Nauka, 1974. E. M. Landis & G. P. Panasenko, On a variant of the Phragmen-Lindelöf type theorem for elliptic equations with coefficients periodic in all variables except one. Trudi seminara imeni I. G. Petrovsky, 1979, v. 5, p. 105–136. O. A. Oleinik & G. A. Yosifian, On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary. Matem. Sbornik, 1980, v. 112, Nr. 4, p. 588–610. O. A. Oleinik & G. A. Yosifian, On the asymptotic behavior at infinity of solutions in linear elasticity. Archive Rational Mech. and Analysis, 1982, v. 78, Nr. 1, p. 29–53. A. Douglis & L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math., 1955, v. 8, p. 503–538. Ja. B. Lopatinsky, Fundamental solutions of a system of differential equations of elliptic type. Ukr. mat. journal, 1951, v. 3, Nr. 1, p. 3–38. L. Bers, F. John, & M. Schechter, Partial differential equations, Interscience publishers, New York, 1964. I. M. Gelfand & G. E. Shilov, Generalized functions, v. 3, Moscow, 1958.