On the analogue of the concavity of entropy power in the Brunn–Minkowski theory

Advances in Applied Mathematics - Tập 57 - Trang 1-20 - 2014
Matthieu Fradelizi1, Arnaud Marsiglietti1
1Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-77454, Marne-la-Vallée, France

Tài liệu tham khảo

Ané, 2000, Sur les inégalités de Sobolev logarithmiques, vol. 10 Ambrosio, 2008, Outer Minkowski content for some classes of closed set, Math. Ann., 342, 727, 10.1007/s00208-008-0254-z Blachman, 1965, The convolution inequality for entropy powers, IEEE Trans. Inform. Theory, IT-11, 267, 10.1109/TIT.1965.1053768 Bobkov, 2012, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, J. Funct. Anal., 262, 3309, 10.1016/j.jfa.2012.01.011 Costa, 1985, A new entropy power inequality, IEEE Trans. Inform. Theory, 31, 751, 10.1109/TIT.1985.1057105 Costa, 1984, On the similarity of the entropy power inequality and the Brunn–Minkowski inequality, IEEE Trans. Inform. Theory, 30, 837, 10.1109/TIT.1984.1056983 Cover, 1991, Information theoretic inequalities, IEEE Trans. Inform. Theory, 37, 1501, 10.1109/18.104312 Dembo, 1990 Federer, 1969 Fiala, 1941, Le problème des isopérimètres sur les surfaces ouvertes à courbure positive, Comment. Math. Helv., 13, 293, 10.1007/BF01378068 Fradelizi, 2003, Some inequalities about mixed volumes, Israel J. Math., 135, 157, 10.1007/BF02776055 Guleryuz, 2002, Information-theoretic inequalities for contoured probability distributions, IEEE Trans. Inform. Theory, 48, 2377, 10.1109/TIT.2002.800496 Gorbovickis, 2013, Strict Kneser–Poulsen conjecture for large radii, Geom. Dedicata, 162, 95, 10.1007/s10711-012-9718-0 Kampf, 2012, The parallel volume at large distances, Geom. Dedicata, 160, 47, 10.1007/s10711-011-9669-x Kampf, 2011 Kampf, 2013, Large parallel volumes of finite and compact sets in d-dimensional Euclidean space, Doc. Math., 18, 275, 10.4171/dm/397 Marsiglietti Rataj, 2009, On the expected surface area of the Wiener sausage, Math. Nachr., 282, 591, 10.1002/mana.200610757 Schneider, 1975, A measure of convexity for compact sets, Pacific J. Math., 58, 617, 10.2140/pjm.1975.58.617 Schneider, 1993, Convex Bodies: The Brunn–Minkowski Theory, vol. 44 Stam, 1959, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inf. Control, 2, 101, 10.1016/S0019-9958(59)90348-1 Stachó, 1976, On the volume function of parallel sets, Acta Sci. Math., 38, 365 Szarek, 2000, Shannon's entropy power inequality via restricted Minkowski sums, vol. 1745, 257 Villani, 2000, A short proof of the “concavity of entropy power”, IEEE Trans. Inform. Theory, 46, 1695, 10.1109/18.850718