On the almost sure convergence for dependent random vectors in Hilbert spaces
Tóm tắt
This work develops almost sure convergence of negatively associated random vectors in Hilbert spaces. Extensions of a result in [4] are given. Illustrative examples are provided.
Tài liệu tham khảo
J. I. Baek and S. T. Park, Convergence of weighted sums for arrays of negatively dependent random variables and its applications, J. Theoret. Probab., 23 (2010), 362–377.
B. Y. Jing and H. Y. Liang, Strong limit theorems for weighted sums of negatively associated random variables, J. Theoret. Probab., 21 (2008), 890–909.
K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist., 11 (1983), 286–295.
M. H. Ko, T. S. Kim and K. H. Han, A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Theoret. Probab., 22 (2009), 506–513.
S. Kochen and C. Stone, A note on the Borel–Cantelli lemma, Illinois J. Math., 8 (1964), 248–251.
P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett., 15 (1992), 209–213.
F. Móricz, Strong limit theorems for blockwise m-dependent and blockwise quasiorthogonal sequences of random variables, Proc. Amer. Math. Soc., 101 (1987), 709–715.
F. Móricz, U. Stadtmüller and M. Thalmaier, Strong laws for blockwise \({\mathcal{M}}\)-dependent random fields, J. Theoret. Probab., 21 (2008), 660–671.
A. Rosalsky and L. V. Thanh, On the strong law of large numbers for sequences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces, Probab. Math. Statist., 27 (2007), 205–222.
U. Stadtmüller and L. V. Thanh, On the strong limit theorems for double arrays of blockwise M-dependent random variables, Acta Math. Sin. (Engl. Ser.), 27 (2011), 1923–1934.
L. V. Thanh, On the Brunk–Chung type strong law of large numbers for sequences of blockwise m-dependent random variables, Esaim: P&S., 10 (2006), 258–268.
L. V. Thanh, On the strong law of large numbers for d-dimensional arrays of random variables, Electron. Comm. Probab., 12 (2007), 434–441.
G. D. Xing and S. C. Yang, Some exponential inequalities for positively associated random variables and rates of convergence of the strong law of large numbers, J. Theoret. Probab., 23 (2010), 169–192.
J. F. Wang and L. X. Zhang, A nonclassical law of the iterated logarithm for functions of positively associated random variables, Metrika, 64 (2006), 361–378.